Apoptosis(凋亡)
As one of the cellular death mechanisms, apoptosis, also known as programmed cell death, can be defined as the process of a proper death of any cell under certain or necessary conditions. Apoptosis is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body.
Many biochemical events and a series of morphological changes occur at the early stage and increasingly continue till the end of apoptosis process. Morphological event cascade including cytoplasmic filament aggregation, nuclear condensation, cellular fragmentation, and plasma membrane blebbing finally results in the formation of apoptotic bodies. Several biochemical changes such as protein modifications/degradations, DNA and chromatin deteriorations, and synthesis of cell surface markers form morphological process during apoptosis.
Apoptosis can be stimulated by two different pathways: (1) intrinsic pathway (or mitochondria pathway) that mainly occurs via release of cytochrome c from the mitochondria and (2) extrinsic pathway when Fas death receptor is activated by a signal coming from the outside of the cell.
Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis.
Caspase family comprises conserved cysteine aspartic-specific proteases, and members of caspase family are considerably crucial in the regulation of apoptosis. There are 14 different caspases in mammals, and they are basically classified as the initiators including caspase-2, -8, -9, and -10; and the effectors including caspase-3, -6, -7, and -14; and also the cytokine activators including caspase-1, -4, -5, -11, -12, and -13. In vertebrates, caspase-dependent apoptosis occurs through two main interconnected pathways which are intrinsic and extrinsic pathways. The intrinsic or mitochondrial apoptosis pathway can be activated through various cellular stresses that lead to cytochrome c release from the mitochondria and the formation of the apoptosome, comprised of APAF1, cytochrome c, ATP, and caspase-9, resulting in the activation of caspase-9. Active caspase-9 then initiates apoptosis by cleaving and thereby activating executioner caspases. The extrinsic apoptosis pathway is activated through the binding of a ligand to a death receptor, which in turn leads, with the help of the adapter proteins (FADD/TRADD), to recruitment, dimerization, and activation of caspase-8 (or 10). Active caspase-8 (or 10) then either initiates apoptosis directly by cleaving and thereby activating executioner caspase (-3, -6, -7), or activates the intrinsic apoptotic pathway through cleavage of BID to induce efficient cell death. In a heat shock-induced death, caspase-2 induces apoptosis via cleavage of Bid.
Bcl-2 family members are divided into three subfamilies including (i) pro-survival subfamily members (Bcl-2, Bcl-xl, Bcl-W, MCL1, and BFL1/A1), (ii) BH3-only subfamily members (Bad, Bim, Noxa, and Puma9), and (iii) pro-apoptotic mediator subfamily members (Bax and Bak). Following activation of the intrinsic pathway by cellular stress, pro‑apoptotic BCL‑2 homology 3 (BH3)‑only proteins inhibit the anti‑apoptotic proteins Bcl‑2, Bcl-xl, Bcl‑W and MCL1. The subsequent activation and oligomerization of the Bak and Bax result in mitochondrial outer membrane permeabilization (MOMP). This results in the release of cytochrome c and SMAC from the mitochondria. Cytochrome c forms a complex with caspase-9 and APAF1, which leads to the activation of caspase-9. Caspase-9 then activates caspase-3 and caspase-7, resulting in cell death. Inhibition of this process by anti‑apoptotic Bcl‑2 proteins occurs via sequestration of pro‑apoptotic proteins through binding to their BH3 motifs.
One of the most important ways of triggering apoptosis is mediated through death receptors (DRs), which are classified in TNF superfamily. There exist six DRs: DR1 (also called TNFR1); DR2 (also called Fas); DR3, to which VEGI binds; DR4 and DR5, to which TRAIL binds; and DR6, no ligand has yet been identified that binds to DR6. The induction of apoptosis by TNF ligands is initiated by binding to their specific DRs, such as TNFα/TNFR1, FasL /Fas (CD95, DR2), TRAIL (Apo2L)/DR4 (TRAIL-R1) or DR5 (TRAIL-R2). When TNF-α binds to TNFR1, it recruits a protein called TNFR-associated death domain (TRADD) through its death domain (DD). TRADD then recruits a protein called Fas-associated protein with death domain (FADD), which then sequentially activates caspase-8 and caspase-3, and thus apoptosis. Alternatively, TNF-α can activate mitochondria to sequentially release ROS, cytochrome c, and Bax, leading to activation of caspase-9 and caspase-3 and thus apoptosis. Some of the miRNAs can inhibit apoptosis by targeting the death-receptor pathway including miR-21, miR-24, and miR-200c.
p53 has the ability to activate intrinsic and extrinsic pathways of apoptosis by inducing transcription of several proteins like Puma, Bid, Bax, TRAIL-R2, and CD95.
Some inhibitors of apoptosis proteins (IAPs) can inhibit apoptosis indirectly (such as cIAP1/BIRC2, cIAP2/BIRC3) or inhibit caspase directly, such as XIAP/BIRC4 (inhibits caspase-3, -7, -9), and Bruce/BIRC6 (inhibits caspase-3, -6, -7, -8, -9).
Any alterations or abnormalities occurring in apoptotic processes contribute to development of human diseases and malignancies especially cancer.
References:
1.Yağmur Kiraz, Aysun Adan, Melis Kartal Yandim, et al. Major apoptotic mechanisms and genes involved in apoptosis[J]. Tumor Biology, 2016, 37(7):8471.
2.Aggarwal B B, Gupta S C, Kim J H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey.[J]. Blood, 2012, 119(3):651.
3.Ashkenazi A, Fairbrother W J, Leverson J D, et al. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors[J]. Nature Reviews Drug Discovery, 2017.
4.McIlwain D R, Berger T, Mak T W. Caspase functions in cell death and disease[J]. Cold Spring Harbor perspectives in biology, 2013, 5(4): a008656.
5.Ola M S, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J]. Molecular and cellular biochemistry, 2011, 351(1-2): 41-58.
Products for Apoptosis
- Caspase(99)
- 14.3.3 Proteins(1)
- Apoptosis Inducers(43)
- Bax(7)
- Bcl-2 Family(120)
- Bcl-xL(8)
- c-RET(9)
- IAP(27)
- KEAP1-Nrf2(66)
- MDM2(12)
- p53(123)
- PC-PLC(4)
- PKD(7)
- RasGAP (Ras- P21)(1)
- Survivin(8)
- Thymidylate Synthase(10)
- TNF-α(145)
- Other Apoptosis(883)
- APC(6)
- PD-1/PD-L1 interaction(90)
- ASK1(3)
- PAR4(2)
- RIP kinase(52)
- FKBP(20)
- Pyroptosis(31)
- Cat.No. 产品名称 Information
-
GC16497
SGI-1776 free base
SGI1776,SGI 1776
A potent inhibitor of Pim kinases -
GC15084
2-Methoxyestradiol (2-MeOE2)
二甲氧基雌二醇; 2-ME2; NSC-659853
2-Methoxyestradiol (2-MeOE2/2-Me)是一种HIF-1α抑制剂。 -
GC15375
PFI-1 (PF-6405761)
PF06405761
A BET bromodomain inhibitor -
GC14945
Sirtinol
2-[[(2-羟基-1-萘基)亚甲基]氨基]-N-(1-苯基乙基)苯甲酰胺
Inhibitor of sirtuin deacetylases -
GC14553
Resveratrol
白藜芦醇; trans-Resveratrol; SRT501
白藜芦醇(转-白藜芦醇;SRT501)是一种植物抗菌素。 -
GC14366
Thioguanine
6-硫鸟嘌呤,Thioguanine; 2-Amino-6-purinethiol
A thiopurine analog -
GC15589
WHI-P154
2-溴-4-(6,7-二甲氧基喹唑啉-4-基氨基)苯酚
A JAK3 inhibitor -
GC10035
TG101209
N-(1,1-二甲基乙基)-3-[[5-甲基-2-[[4-(4-甲基-1-哌嗪基)苯基]氨基]-4-嘧啶基]氨基]苯磺酰胺,TG-101209
An inhibitor of JAK2, FLT3, RET, and JAK3 -
GC13433
AZ 960
5-氟-2-[[(1S)-1-(4-氟苯基)乙基]氨基]-6-[(5-甲基-1H-吡唑-3-基)氨基]-3-吡啶腈,AZ-960,AZ960
A JAK2 inhibitor -
GC17050
CYT387
莫洛替尼,Cyt-387,MOMELOTINIB,CYT 387,CYT 11387
A potent inhibitor of JAK1 and JAK2 -
GC15980
WP1066
(2E)-3-(6-溴-2-吡啶基)-2-氰基-N-[(1S)-1-苯基乙基]-2-丙烯酰胺
An inhibitor of STAT3
-
GC14324
TG101348 (SAR302503)
N-(1,1-二甲基乙基)-3-[[5-甲基-2-[[4-[2-(1-吡咯烷基)乙氧基]苯基]氨基]-4-嘧啶基]氨基]苯磺酰胺,Tg-101348,SAR-302503
A JAK2 inhibitor -
GC17586
Tofacitinib (CP-690550) Citrate
枸橼酸托法替尼; Tasocitinib citrate; CP-690550 citrate
A pan-JAK inhibitor -
GC15295
AUY922 (NVP-AUY922)
VER-52296, AUY-922, AUY 922, Luminespib
AUY922 (NVP-AUY922)是一种高效且选择性的 HSP90抑制剂,对 HSP90α和 HSP90β的 IC50 值分别为 13nM和 21nM。 -
GC11720
17-AAG (KOS953)
坦螺旋霉素; 17-AAG; NSC 330507; CP 127374
17-AAG(格尔德霉素)是一种天然的苯醌安沙霉素抗生素,是第一个确定的 Hsp90 抑制剂。 -
GC18008
PCI-34051
N-羟基-1-(4-甲氧基苄基)-1H-吲哚-6-甲酰胺,PCI34051, PCI 34051
A potent, selective HDAC8 inhibitor -
GC13055
Mocetinostat (MGCD0103, MG0103)
N-(2-氨基苯基)-4-([[4-(吡啶-3-基)嘧啶-2-基]氨基]甲基)苯甲酰胺,MGCD-0103
An orally available HDAC inhibitor -
GC14998
Rocilinostat (ACY-1215)
Ricolinostat
A selective inhibitor of HDAC6 -
GC12191
LY-411575
(AS)-N-[(1S)-2-[[(7S)-6,7-二氢-5-甲基-6-氧代-5H-二苯并[B,D]氮杂卓-7-基]氨基]-1-甲基-2-氧代乙基]-3,5-二氟-ALPHA-羟基苯乙酰胺
A γ-secretase inhibitor -
GC14209
Apoptosis Activator 2
1-(3,4-二氯苄基)-1H-吲哚-2,3-二酮
An activator of caspases -
GC10801
Disulfiram
双硫仑; Tetraethylthiuram disulfide; TETD
An irreversible inhibitor of aldehyde dehydrogenase -
GC10510
LDN 57444
Ubiquitin C-terminal Hydrolase L1 Inhibitor, UCHL1 Inhibitor
An inhibitor of UCH-L1 -
GC13508
Trametinib (GSK1120212)
曲美替尼; GSK1120212; JTP-74057
Trametinib (GSK1120212, JTP-74057) 是第二代 MEK 激酶小分子抑制剂。 -
GC15568
Dasatinib (BMS-354825)
达沙替尼; BMS-354825
An inhibitor of Abl and Src -
GC11931
BKM120
BKM-120,Buparlisib,BKM 120,NVP-BKM120,NVP-BKM-120
An inhibitor of class I PI3K isoforms -
GC10397
PD0325901
N-[(2R)-2,3-二羟基丙氧基]-3,4-二氟-2-[(2-氟-4-碘苯)氨基]苯甲酰胺,PD0325901,PD-0325901,PD 0325901,PD325901,PD 325901,PD-325901
PD0325901是一种具口服活性、选择性和非ATP竞争性的丝裂原活化蛋白激酶激酶(MEK)抑制剂,IC50值为0.33nM。 -
GC17369
Sorafenib
索拉非尼; Bay 43-9006
索拉非尼Sorafenib是Raf-1和B-Raf的多激酶抑制剂,IC50分别为6 nM和22 nM;Sorafenib对VEGFR-2 VEGFR-3 PDGFR-β Flt-3和c-KIT也有抑制作用,IC50值分别为90 nM、20 nM、57 nM、59 nM和68 nM;索拉非尼能诱导自噬细胞凋亡和激活铁死亡,并具有抗肿瘤活性。 -
GC10512
Y-27632 dihydrochloride
y-27632, Y27632, Y-27632 dihydrochloride, Y 27632
Y-27632 dihydrochloride 作为一种选择性 Rho 激酶抑制剂,是一种新型支气管扩张剂。 -
GC12405
ABT-263 (Navitoclax)
Navitoclax,ABT-263,ABT263,ABT 263
ABT-263 (Navitoclax) 是 Bcl-xL、Bcl-2 和 Bcl-w 的抑制剂,Ki 分别≤0.5 nM、≤1 nM 和≤1 nM。 -
GC12942
DAPT (GSI-IX)
gamma-Secretase Inhibitor IX, DAPT, GSI-IX
DAPT (GSI-IX) 是一种具有口服活性的 γ-分泌酶抑制剂,对人原代神经元培养物中产生的总淀粉样蛋白-β (Aβ) 和 Aβ42 的 IC50 分别为 115 nM 和 200 nM。 -
GC17234
ABT-737
ABT 737, ABT737
An inhibitor of anti-apoptotic Bcl-2 proteins -
GC14069
ABT-199
维奈妥拉; ABT-199; GDC-0199; Venetoclax
Venetoclax (ABT-199, GDC-0199) 是 Bcl-2 的选择性抑制剂,在无细胞试验中 K i 为 0.01 nM。 -
GN10122
Linalool
芳樟醇
A monoterpene alcohol with diverse biological activities -
GN10751
Dictamnine
白鲜碱; Dictamnine; Dectamine
An alkaloid with diverse biological activities -
GN10801
Senkyunolide I
洋川芎内酯I
Senkyunolide I 是从川芎中分离出来的,是一种抗偏头痛化合物。 -
GN10280
Sinensetin
5,6,7,3',4'-五甲氧基黄酮,Pedalitin permethyl ether
An anti-inflammatory flavone -
GN10506
Umbelliferone
7-羟基香豆素; 7-Hydroxycoumarin; Hydrangin; NSC 19790
A derivative and metabolite of coumarin with diverse biological activities -
GN10456
L-Theanine
L-茶氨酸; L-Glutamic Acid γ-ethyl amide; Nγ-Ethyl-L-glutamine
A neuroprotective amino acid -
GN10113
Cepharanthine
千金藤碱
A biscoclaurine alkaloid -
GN10358
Berbamine hydrochloride
盐酸小檗胺
A bisbenzylisoquinoline alkaloid with diverse biological activities -
GN10213
Sinomenine Hydrochloride
盐酸青藤碱; Cucoline hydrochloride
A natural anti-inflammatory alkaloid -
GN10666
Isoalantolactone
异土木香内酯; (+)-Isoalantolactone; Isohelenin
A sesquiterpene lactone with diverse biological activities -
GN10030
Fisetin
漆黄素
Fisetin是一种天然黄酮醇,存在于许多水果和蔬菜中,具有多种生物活性。 -
GN10503
Piceatannol
白皮杉醇; Astringenin; trans-Piceatannol
Piceatannol(3,3 ',4,5 ' -反式三羟基二苯乙烯)是天然存在的白藜芦醇羟基化类似物。 -
GN10216
Shikonin
紫草素; C.I. 75535; Isoarnebin 4
Shikonin是一种含醌的天然产物。Shikonin是一种有效的TMEM16A氯离子通道抑制剂,IC50为6.5μM。 -
GN10797
Tangeretin
桔皮素; Tangeritin; NSC53909; NSC618905
Tangeretin是一种从柑橘皮中提取的天然多甲氧基黄酮化合物,是Notch-1的抑制剂。 -
GN10254
Ginsenoside Rc
人参皂苷 Rc; Panaxoside Rc
A saponin with diverse biological activities -
GN10629
5,7-dihydroxychromone
5,7-二羟基色酮
A flavone decomposition product with diverse biological activities -
GN10269
Wedelolactone
蟛蜞菊内酯
A natural NF-κB inhibitor -
GN10741
Garcinone D
伽升沃 D
A xanthone with diverse biological activities