Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Proteasome>>Calpain Inhibitor II

Calpain Inhibitor II Sale

(Synonyms: Calpain inhibitor II) 目录号 : GC40694

A non-selective cysteine protease inhibitor

Calpain Inhibitor II Chemical Structure

Cas No.:110115-07-6

规格 价格 库存 购买数量
1mg
¥428.00
现货
5mg
¥1,079.00
现货
10mg
¥1,936.00
现货
25mg
¥3,221.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Calpain inhibitor II is a cell permeable, peptide aldehyde inhibitor of calpain I (Ki = 120 nM), calpain II (Ki = 230 nM), cathepsin B (Ki = 100 nM), and cathepsin L (Ki = 0.6 nM). It has been used to demonstrate the involvement of ubiquitin-proteasome protein degradation in various biological systems.

Chemical Properties

Cas No. 110115-07-6 SDF
别名 Calpain inhibitor II
Canonical SMILES O=C[C@@H](NC([C@@H](NC([C@@H](NC(C)=O)CC(C)C)=O)CC(C)C)=O)CCSC
分子式 C19H35N3O4S 分子量 401.6
溶解度 DMF: 20 mg/ml,DMSO: 20 mg/ml,Ethanol: 20 mg/ml,Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.49 mL 12.4502 mL 24.9004 mL
5 mM 0.498 mL 2.49 mL 4.9801 mL
10 mM 0.249 mL 1.245 mL 2.49 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Inhibition of secretion from isolated rat alveolar epithelial type II cells by the cell permeant Calpain Inhibitor II (N-acetyl-leucyl-leucyl-methioninal)

Cell Calcium 1995 Jul;18(1):1-8.PMID:7585879DOI:10.1016/0143-4160(95)90040-3.

Although several signal transduction pathways, including activation of specific protein kinases have been proposed and studied for the secretory processes of lung surfactant from alveolar epithelial type II cells, the role of proteolytic processing by calpains (calcium-activated neutral proteases) in secretion has not been investigated. Therefore, we examined the effect of cell permeable calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal) and II (N-acetyl-leucyl-leucyl-methioninal) on secretion to test the hypothesis that calpains participate in the secretory processes of alveolar epithelial type II cells. Calpain inhibitor I preferentially inhibits micro (mu)-calpain while inhibitor II inhibits milli (m)-calpain. Isolated type II cells were prelabelled with [3H]-choline for 18-24 h. To measure secretion, [3H]-labelled disaturated phosphatidylcholine (DSPC) released in the medium was monitored. Basal secretion of DSPC was maximally (87%) depressed by the presence of 10 microM inhibitor II. Secretagogue-stimulated secretion was also modulated by inhibitor II treatment. Stimulation with calcium ionophore A23187 enhanced secretion 3-fold. However, cells pre-exposed to inhibitor II displayed a 90% reduction of calcium-stimulated secretion. Terbutaline (10 microM) and ATP (1 mM) each increased secretion 2- and 4-fold, respectively. However, the inhibitor-treated cells, exposed to the same stimuli, attained only 53 or 62% of these increases. Calpain inhibitor I, on the other hand, inhibited neither basal nor stimulated secretion. The results suggest that m-calpain, the major isozyme of lung calpain requiring mM calcium for activity in vitro, is involved in the secretory pathways of alveolar epithelial type II cells.

Calpain Inhibitor II induces caspase-dependent apoptosis in human acute lymphoblastic leukemia and non-Hodgkin's lymphoma cells as well as some solid tumor cells

Clin Cancer Res 2000 Jun;6(6):2456-63.PMID:10873099doi

Calpain is a calcium-dependent cysteine protease that is implicated in calcium-dependent cell death, and calpain inhibitors are generally considered as inhibitors of apoptosis. To the contrary, in the present study, we found that Calpain Inhibitor II (CPI-2) triggers rapid apoptosis in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL) cells. All target cell lines were killed by CPI-2, including: ALL-1, a multidrug-resistant BCR-ABL fusion transcript-positive t(9;22) pro-B ALL cell line; RS4;11, a highly radiation-resistant MLL-AF4 fusion transcript-positive t(4;11) pre-pre B ALL cell line; RAMOS, a highly radiation-resistant and p53-deficient Burkitt's lymphoma cell line; DAUDI, a Burkitt's leukemia/lymphoma cell line; NALM-6, a pre-B ALL cell line; and JURKAT and MOLT-3, two T-lineage ALL/NHL cell lines. CPI-2-induced apoptosis in LYN-deficient and BTK-deficient subclones of the DT-40 lymphoma B cell line as effectively as it did in wild-type DT-40 cells. Thus, CPI-2-induced apoptosis is not dependent on the protein tyrosine kinases LYN or BTK. Notably, caspase inhibitor I effectively inhibited CPI-2-induced apoptosis, suggesting that the inhibition of a CPI-2-susceptible protease results in caspase activation, leading to apoptosis in ALL/NHL cells. Unlike the high calpain-expressing ALL/NHL cell lines, myeloid leukemia cell lines HL-60/AML, K562/CML, and U937/AMML, or solid tumor cell lines BT-20/breast cancer, PC-3/prostate cancer, U373/glioblastoma, and HeLa/epitheloid cancer, were not susceptible to the cytotoxicity of CPI-2. Taken together, our results identify calpain as a new molecular target for the treatment of ALL and NHL. CPI-2 and its analogues represent a promising new class of antileukemia/lymphoma agents that deserves further development.

Calcium-calpain Dependent Pathways Regulate Vesiculation in Malignant Breast Cells

Curr Cancer Drug Targets 2017;17(5):486-494.PMID:27799031DOI:10.2174/1568009616666161026165736.

Background: Multidrug resistance in cancer (MDR) occurs when tumours become crossresistant to a range of different anticancer agents. One mechanism by which MDR can be acquired is through cell to cell communication pathways. Membrane-derived microparticles (MPs) are emerging as important signaling molecules in this process. MPs are released from most eukaryotic cells and transfer functional proteins and nucleic acids to recipient cells conferring deleterious traits within the cancer cell population including MDR, metastasis, and angiogenesis. MP formation is known to be dependent on calpain, an intracellular cysteine protease which acts to cleave the cytoskeleton underlying the plasma membrane, resulting in cellular surface blebbing Objective: To establish the role of calpain in vesiculation in malignant and non-malignant cells by 1) comparing membrane vesiculation at rest and following the release of intracellular calcium, and 2) comparing vesiculation in the presence and absence of Calpain Inhibitor II (ALLM). Method: This study examines the differences in vesiculation between malignant and non-malignant cells using high-resolution Atomic Force Microscopy (AFM). HBEC, MBE-F, MCF-7, and MCF- 7/Dx cells were analysed at rest and following treatment with calcium ionophore A23187 for 18 hours. Vesiculation of calcium activated and resting malignant and non-malignant cells was also assessed after 18 hour treatment of Calpain Inhibitor II (ALLM). Results: We demonstrate that malignant MCF-7 and MCF-7/Dx cells have an intrinsically higher degree of vesiculation at rest when compared to non-malignant human brain endothelial cells (HBEC) and human mammary epithelial cells (MBE-F). Cellular activation with the calcium ionophore A23187 resulted in an increase in vesiculation in all cell types. We show that calpain-mediated MP biogenesis is the dominant pathway at rest in malignant cells as vesiculation was shown to be inhibited with Calpain Inhibitor II (ALLM). Conclusion: These results suggest that differences in the biogenic pathways exist in malignant and non-malignant cells and have important implications in defining novel strategies to selectively target malignant cells for the circumvention of deleterious traits acquired through intercellular exchange of extracellular vesicles.