Home>>Signaling Pathways>> Tyrosine Kinase>> Ephrin Receptor>>Tesevatinib (XL-647)

Tesevatinib (XL-647) Sale

(Synonyms: XL-647; EXEL-7647; KD-019) 目录号 : GC31752

A multi-kinase inhibitor

Tesevatinib (XL-647) Chemical Structure

Cas No.:781613-23-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,554.00
现货
2mg
¥1,260.00
现货
5mg
¥2,678.00
现货
10mg
¥4,320.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

Growth inhibition of H1975 and A431 cells by increasing concentrations of Tesevatinib (XL-647), gefitinib, or erlotinib is determined by seeding 5000 cells per well in 96-well plates. The following day, cells are washed once with low-serum RPMI 1640 (0.1% fetal bovine serum, 1% nonessential amino acids, and 1% penicillin/streptomycin), after which 90 μL of the low-serum RPMI 1640 are added. Test compounds (Tesevatinib (XL-647)) are diluted to 10 times the test concentrations and 10 μL are added to triplicate wells for a 72-h incubation. Cell viability is determined[1].

Animal experiment:

Mice: Tumor-bearing mice are given either Tesevatinib (XL-647), erlotinib, or gefitinib at 100 mg/kg and tumors are harvested 1 to 72 h later. Half an hour before respective time point, EGF (50 μg/mouse) is given via i.v. bolus injection with tumors dissected 30 min later and tumor extracts are prepared by homogenization in 10 volumes of ice-cold lysis buffer. Lysates are clarified by centrifugation and EGFR tyrosine phosphorylation levels are determined by ELISA[1].

References:

[1]. Gendreau SB, et al. Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin Cancer Res. 2007 Jun 15;13(12):3713-23.

产品描述

XL647 is a multi-kinase inhibitor (IC50s = 0.3, 16, 1.5, 8.7, and 1.4 nM for EGFR, ErbB2, KDR, FLT4, and EphB4, respectively).1 It is selective for these kinases over a panel of 10 tyrosine kinases and 55 serine/threonine kinases at 10 μM. XL647 inhibits growth of A431 cells expressing wild-type EGFR and H1975 non-small cell lung cancer (NSCLC) cells expressing both the activating mutant EGFRL858R and the drug resistance-associated mutant EGFRT790M (IC50s = 13 and 920 nM, respectively). In vivo, XL647 (10, 30, and 100 mg/kg) inhibits tumor growth and EGFR phosphorylation in an H1975 mouse xenograft model in a dose-dependent manner.

1.Gendreau, S.B., Ventura, R., Keast, P., et al.Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647Clin. Cancer Res.13(12)3713-3723(2007)

Chemical Properties

Cas No. 781613-23-8 SDF
别名 XL-647; EXEL-7647; KD-019
Canonical SMILES [H][C@@]12[C@@](C[C@@H](COC3=CC4=C(C(NC5=C(F)C(Cl)=C(Cl)C=C5)=NC=N4)C=C3OC)C2)([H])CN(C)C1
分子式 C24H25Cl2FN4O2 分子量 491.39
溶解度 DMSO : ≥ 30 mg/mL (61.05 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.035 mL 10.1752 mL 20.3504 mL
5 mM 0.407 mL 2.035 mL 4.0701 mL
10 mM 0.2035 mL 1.0175 mL 2.035 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

In Vivo Efficacy of Tesevatinib in EGFR-Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling

Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug-tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 μg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 μg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03-0.08; TKO mice, 0.40-1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.

Audio Interview: Covid-19 in South Africa and a New SARS-CoV-2 Variant

Gateways to clinical trials

Agomelatine, AGRO-100, AIDSVAX gp120 B/E, alfimeprase, aliskiren fumarate, ALVAC vCP1452, alvocidib hydrochloride, ambrisentan, AME-527, AN-0128, apadenoson, ARRY-142886, asenapine maleate, axitinib, azimilide hydrochloride; Belimumab, bevacizumab, biolimus A9, BiovaxID, bryostatin 1; Cannabidiol, celgosivir, CG-1940/CG-8711, CKD-501, collagen-PVP, CpG-10101, CTL-102, CTL-102/CB-1954; D-4F, darusentan, dexverapamil, DNA influenza vaccine, dronabinol/cannabidiol, dronedarone hydrochloride; Eculizumab, edodekin alfa, edotecarin, enzastaurin hydrochloride; Fingolimod hydrochloride; Golimumab; HBV-DNA vaccine, hyaluronic acid; I-131 ch-TNT-1/B, imatinib mesylate, inhaled insulin, ipilimumab, ispinesib mesylate, i.v. gamma-globulin; KU-59436; Lapaquistat; Mapatumumab, MC-1, MC-1/lisinopril, mepolizumab; Nibentan, nilotinib, Nobori, NV1FGF; Ocrelizumab; Paclimer, pagoclone, paliperidone, PC-515, PHA-794428, phosphostim, PPI-2458, prasugrel, PTC-299; Renzapride hydrochloride, Reolysin, reslizumab, revaprazan hydrochloride, rivaroxaban, romidepsin, rubitecan, ruboxistaurin mesilate hydrate; Sapacitabine, SarCNU, ST-1859, sunitinib malate; Tanespimycin, temsirolimus, tgAAC-94, TGN-255, ticagrelor, tipifarnib, tolvaptan, tretazicar, TRU-015; Upgrade varicella vaccine, Ushercell; Vernakalant hydrochloride, verpasep caltespen, VNP-40101M, VRC-HIVADV014-00-VP, VRC-HIVDNA009-00-VP, VX-001; XL-647, XL-820, XL-880, XL-999.

Gateways to clinical trials

Gateways to Clinical Trials are a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com.This issue focuses on the following selection of drugs: ABT-263, AC-2307, Aclidinium bromide, Adefovir dipivoxil, ADH-1, Agatolimod sodium, Alefacept, Aliskiren fumarate, Aminolevulinic acid methyl ester, Anakinra, Apaziquone, Aprepitant, Aripiprazole, ASM-8, Atiprimod hydrochloride, AVE-0277, AVE-1642, AVE-8062, Axitinib, Azacitidine, AZD-0530; Bazedoxifene acetate, Bevacizumab, Bexarotene, BI-2536, Biphasic insulin aspart, BMS-387032, BMS-663513, Bortezomib, BQ-123, Brivanib alaninate, BSI-201; Caspofungin acetate, CDX-110, Cetuximab, Ciclesonide, CR-011, Cypher; Daptomycin, Darbepoetin alfa, Dasatinib, Decitabine, Deferasirox, Denosumab, Dexlansoprazole, Dexmethylphenidate hydrochloride, DNA-Hsp65 vaccine, Dovitinib, Drotrecogin alfa (activated), DTaP-HBV-IPV/Hibvaccine, DTaP-IPV-HB-PRP-T, Duloxetine hydrochloride, Dutasteride; Ecogramostim, Elacytarabine, Emtricitabine, Endothelin, Entecavir, Eplivanserin fumarate, Escitalopram oxalate, Everolimus, Ezetimibe, Ezetimibe/simvastatin; Farletuzumab, Fesoterodine fumarate, Fibrin sealant (human), Fulvestrant; Gefitinib, Gemtuzumab ozogamicin, Glufosfamide, GSK-1562902A; Hib-TT; Imatinib mesylate, IMC-11F8, Imidazoacridinone, IMP-321, INCB-18424, Indiplon, Indisulam, INNO-406, Irinotecan hydrochloride/Floxuridine, ITF-2357, Ixabepilone; KRN-951; Lasofoxifene tartrate; Lenalidomide, LGD-4665, Lonafarnib, Lubiprostone, Lumiliximab; MDX-1100, Melan-A/MART-1/gp100/IFN-alfa, Methyl-CDDO, Metreleptin, MLN-2704, Mycophenolic acid sodium salt; Na-ASP-2, Naproxcinod, Nilotinib hydrochloride monohydrate, NPI-2358; Oblimersen sodium, Odanacatib; Paclitaxel nanoparticles, PAN-811, Panobinostat, PBI-1402, PC-515, Peginterferon alfa-2a, Peginterferon alfa-2b, Pemetrexed disodium, Perillyl alcohol, Perphenazine 4-aminobutyrate, PeviPRO/breast cancer, PF-03814735, PHA-739358, Pimecrolimus, Plitidepsin, Posaconazole, Prasterone, Prasugrel, Pregabalin, Prucalopride, PRX-08066; rAAV2-TNFR:Fc, Ranelic acid distrontium salt, Ranibizumab, rCD154-CLL, Retapamulin, RTS,S/SBAS2, rV-PSA-TRICOM/rF-PSA-TRICOM; SG-2000, Sinecatechins, Sirolimus-eluting stent, Sorafenib, SP-1640, Strontium malonate, Succinobucol, Sunitinib malate; Taxus, Teduglutide, Telavancin hydrochloride, Telbivudine, Telmisartan/hydrochlorothiazide, Tenofovir disoproxil fumarate, Tenofovir disoproxil fumarate/emtricitabine, Tocilizumab; Ustekinumab; V-5 Immunitor, Voriconazole, Vorinostat; Xience V, XL-184, XL-647, XL-765; Y-39983, Zibotentan.

Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs

Recent investigations have suggested that anticancer therapeutics may be enhanced by co-targeting the primary anticancer target and the corresponding drug escape pathways. Whether this strategy confers statistically significant clinical advantage has not been systematically investigated. This question was probed by the evaluation of the clinical status and the multiple targets of 23 approved and 136 clinical trial multi-target anticancer drugs with particular focus on those co-targeting EGFR, HER2, Abl, VEGFR2, mTOR, PI3K, Alk, MEK, KIT, and DNA topoisomerase, and some of the 14, 7, 13, 20, 6, 5, 7, 2, 4 and 10 cancer drug escape pathways respectively. Most of the approved (73.9%) and phase III (75.0%), the majority of the Phase II (62.8%) and I (53.6%), and the minority of the discontinued (35.3%) multi-target drugs were found to co-target cancer drug escape pathways. This suggests that co-targeting anticancer targets and drug escape pathways confer significant clinical advantage and such strategy can be more extensively explored.