Home>>Signaling Pathways>> Ox Stress Reagents>> Antioxidants>>Coenzyme Q2

Coenzyme Q2 Sale

(Synonyms: 辅酶Q2) 目录号 : GC43297

A biosynthetic precursor to CoQ10 and an inhibitor of mitochondrial complex I

Coenzyme Q2 Chemical Structure

Cas No.:606-06-4

规格 价格 库存 购买数量
1mg
¥633.00
现货
5mg
¥1,901.00
现货
10mg
¥3,169.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Coenzyme Q10 is a component of the electron transport chain and participates in aerobic cellular respiration, generating energy in the form of ATP. In its reduced form, it acts as an antioxidant. Coenzyme Q2 is a precursor of coenzyme Q10 that has 2, rather than 10, isoprenoid units on the ubiquinone base. It can act as an electron acceptor for bacterial Complex I. In mammalian cells, exogenous coenzyme Q2 prevents the production of reactive oxygen species associated with Complex I activity. Forms of coenzyme Q with shorter isoprenoid chains, including coenzyme Q2, induce p53-dependent apoptosis in human B-cell acute lymphoblastoid leukemia BALL-1 cells.

Chemical Properties

Cas No. 606-06-4 SDF
别名 辅酶Q2
Canonical SMILES O=C(C(OC)=C1OC)C(C)=C(C/C=C(CC/C=C(C)/C)\C)C1=O
分子式 C19H26O4 分子量 318.4
溶解度 DMF: 10 mg/ml,Ethanol: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1407 mL 15.7035 mL 31.407 mL
5 mM 0.6281 mL 3.1407 mL 6.2814 mL
10 mM 0.3141 mL 1.5704 mL 3.1407 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Coenzyme Q2 induced p53-dependent apoptosis

Biochim Biophys Acta 2005 Jun 20;1724(1-2):49-58.PMID:15905035DOI:10.1016/j.bbagen.2005.04.013.

Coenzyme Q functions as an electron carrier and reversibly changes to either an oxidized (CoQ), intermediate (CoQ.-), or reduced (CoQH2) form within a biomembrane. The CoQH2 form also acts as an antioxidant and prevents cell death, and thus has been successfully used as a supplement. On the other hand, the value of the CoQ/CoQH2 ratio has been shown to increase in a number of diseases, presumably due to an anti-proliferative effect involving CoQ. In the present study, we examined the effect of CoQ and its isoprenoid side chain length variants on the growth of cells having different p53 statuses. Treatment with CoQs having shorter isoprenoid chains, especially CoQ2, induced apoptosis in p53-point mutated BALL-1 cells, whereas treatment with longer isoprenoid chains did not. However, CoQ2 did not induce apoptosis in either a p53 wild-type cell line or a p53 null mutant cell line. These results indicated that the induction of apoptosis by CoQ2 was dependent on p53 protein levels. Moreover, CoQ2 induced reactive oxygen species (ROS) and the phosphorylation of p53. An antioxidant, l-ascorbic acid, inhibited CoQ2-induced p53 phosphorylation and further apoptotic stimuli. Overall, these results suggested that short tail CoQ induces ROS generation and further p53-dependent apoptosis.

New animal models reveal that Coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8) are candidate genes for the onset of type 2 diabetes associated with obesity in rats

Mamm Genome 2015 Dec;26(11-12):619-29.PMID:26296322DOI:10.1007/s00335-015-9597-4.

Obesity is a major risk factor for the onset of type 2 diabetes; however, little is known about the gene(s) involved. Therefore, we developed new animal models of obesity to search for diabetogenic genes associated with obesity. We generated double congenic rat strains with a hyperglycaemic quantitative trait locus (QTL) derived from the Otsuka Long-Evans Tokushima Fatty rat and a fa/fa (Lepr-/-) locus derived from the Zucker Fatty rat; phenotypic analysis for plasma glucose and insulin levels and RNA and protein levels were determined using reverse transcription quantitative PCR and Western blotting analyses, respectively. The double congenic strain F344-fa-nidd2 (Lepr-/- and Nidd2/of) exhibited significantly higher glucose levels and significantly lower hypoglycaemic response to insulin than the obese control strain F344-fa (Lepr-/-). These phenotypes were clearly observed in the obese strains but not in the lean strains. These results indicate that the Nidd2/of locus harbours a diabetogenic gene associated with obesity. We measured the expression of 60 genes in the Nidd2/of QTL region between the strains and found that the mRNA expression levels of five genes were significantly different between the strains under the condition of obesity. However, three of the five genes were differentially expressed in both obese and lean rats, indicating that these genes are not specific for the condition of obesity. Conversely, the other two genes, Coenzyme Q2 (Coq2) and placenta-specific 8 (Plac8), were differentially expressed only in the obese rats, suggesting that these two genes are candidates for the onset of type 2 diabetes associated with obesity in rats.

Opposite and tissue-specific effects of Coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria: role of complex I

J Mol Cell Cardiol 2012 May;52(5):1091-5.PMID:22387164DOI:10.1016/j.yjmcc.2012.02.005.

Coenzyme Q(2) (CoQ(2)) is known to inhibit mitochondrial permeability transition pore (mPTP) opening in isolated rat liver mitochondria. In this study, we investigated and compared the effects of CoQ(2) on mPTP opening and ROS production in isolated rabbit heart and rat liver mitochondria. Mitochondria were isolated from New Zealand White rabbit hearts and Wistar rat livers. Oxygen consumption, Ca(2+)-induced mPTP opening, ROS production and NADH DUb-reductase activity were measured. Rotenone was used to investigate the effect of CoQ(2) on respiratory complex I activity. CoQ(2) (23 μM) reduced the respiratory control index by 32% and 57% (p<0.01) in heart and liver mitochondria respectively, mainly through an increased oxygen consumption in state 4. CoQ(2) induced a 60% (p<0.05) decrease of calcium retention capacity (CRC) in heart mitochondria and inversely a 46% (p<0.05) increase in liver mitochondria. In basal condition, CoQ(2) induced a 170% (p<0.05) increase of H(2)O(2) production in heart mitochondria and 21% (ns) decrease of H(2)O(2) production in liver mitochondria. Because rotenone, a complex I inhibitor, increases H(2)O(2) production in heart but not in liver mitochondria we investigated the CoQ(2) effect in a dose-response assay of complex I inhibition by rotenone in both mitochondria. CoQ(2) antagonized the effect of rotenone on respiratory complex I activity in liver but not in heart mitochondria. CoQ(2) significantly reduced NADH DUb-reductase activity in liver (-47%) and heart (-37%) mitochondria. In conclusion, our data showed that on the contrary to what was observed in liver mitochondria, CoQ(2) favors mPTP opening and ROS production in heart mitochondria through an opposite effect on respiratory complex I activity.

Coenzyme Q2 is a universal substrate for the measurement of respiratory chain enzyme activities in trypanosomatids

Parasite 2019;26:17.PMID:30901308DOI:10.1051/parasite/2019017.

The measurement of respiratory chain enzyme activities is an integral part of basic research as well as for specialized examinations in clinical biochemistry. Most of the enzymes use ubiquinone as one of their substrates. For current in vitro measurements, several hydrophilic analogues of native ubiquinone are used depending on the enzyme and the workplace. We tested five readily available commercial analogues and we showed that Coenzyme Q2 is the most suitable for the measurement of all tested enzyme activities. Use of a single substrate in all laboratories for several respiratory chain enzymes will improve our ability to compare data, in addition to simplifying the stock of chemicals required for this type of research.