SCR7
目录号 : GC12106A DNA ligase IV inhibitor
Sample solution is provided at 25 µL, 10mM.
Cell experiment [1]: | |
Cell lines |
Epithelial (A549) and melanoma (MelJuSo) cell line derivatives |
Preparation method |
Soluble in DMSO > 10 mM. General tips for obtaining a higher concentration: Please warm the tube at 37 ℃ for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20℃ for several months. |
Reaction Conditions |
24 hours at 37°C |
Applications |
Scr7 increases the efficiency of insertional mutagenesis in cell lines. In A549 cells, 0.01 μM Scr7 improves the efficiency of insertion at the target site about threefold relative to the untreated control. In Scr7-treated MelJuSo cells, the insertion efficiency is also enhanced in a dose-dependent manner up to 19-fold. |
Animal experiment [1]: | |
Animal models |
Kell-LPETG mice |
Dosage form |
CRISPR components mixture (Cas9 mRNA, sgRNA and targeting template) and 10 mM of Scr7 NHEJ inhibitor (to 1 mM final) were injected into the cytoplasm at the pronuclear stage. The injected zygotes were transferred at the 2-cell stage into the pseudo-pregnant females. |
Applications |
Co-injection of Scr7 increases the efficiency of precise genome editing in mouse embryos. The insertion efficiency with Scr7 co-injection is significantly higher (P = 0.0012) compared to blastocysts not injected with Scr7. The insertion efficiency in Scr7-co-injected E10 embryos is also significantly enhanced compared to E10 embryos not injected with Scr7 (P = 0.003). |
Other notes |
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal. |
References: 1. Maruyama T, Dougan SK, Truttmann MC et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015 May;33(5):538-42. |
Scr7 is a DNA ligase IV inhibitor, initially identified as an anti-cancer agent [1].
Scr7 targets the DNA binding domain of DNA ligase IV, reducing its affinity for double strand breaks (DSBs) and inhibiting its function. Scr7 also inhibits DNA ligase III (but not DNA ligase I), albeit less efficiently. Cells were treated with doxycycline to induce Cas9 expression, with various concentrations of Scr7 for 24 h. Scr7 maintained cells capable of entering S/G2 phase, which is necessary for HDR. [1] Treatment of mice with Scr7 affects lymphocyte development, as DNA ligase IV plays a key role in the joining of coding ends during V(D)J recombination by means of C-NHEJ16. The defects in lymphocyte development upon Scr7 treatment are transient and reversible, due to the noncovalent mode of binding of Scr7. Scr7 enhanced the frequency of HDR by transiently blocking NHEJ (with the exception of DNA ligase I–dependent alt-NHEJ), resulting in precise genome editing by CRISPR-Cas9 in both cultured cells and in mice. [2]
References:
[1]. Srivastava M, Nambiar M, Sharma S et al. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. 2012 Dec 21;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
[2]. Maruyama T, Dougan SK, Truttmann MC et al.Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015 Mar 23. doi: 10.1038/nbt.3190. [Epub ahead of print]
Cas No. | 1533426-72-0 | SDF | |
化学名 | 5,6-bis((E)-benzylideneamino)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one | ||
Canonical SMILES | S=C(NC(/N=C/C1=CC=CC=C1)=C2/N=C/C3=CC=CC=C3)NC2=O | ||
分子式 | C18H14N4OS | 分子量 | 334.39 |
溶解度 | ≥ 16.7195mg/mL in DMSO | 储存条件 | Store at -20°C |
General tips | For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while. | ||
Shipping Condition | Evaluation sample solution : ship with blue ice All other available size: ship with RT , or blue ice upon request |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % ddH2O | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL ddH2O,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。