Home>>Signaling Pathways>> Neuroscience>>Cu-ATSM

Cu-ATSM

(Synonyms: copper-ATSM, CuII(atsm)) 目录号 : GC43329

A copper-containing compound with diverse biological activities

Cu-ATSM Chemical Structure

Cas No.:68341-09-3

规格 价格 库存 购买数量
1mg
¥278.00
现货
5mg
¥834.00
现货
10mg
¥1,437.00
现货
25mg
¥3,152.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

The metallo-protein Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme responsible for scavenging superoxide radicals. Mutations in SOD1, which alter its metal binding capacity and can result in protein misfolding and aggregation, have been linked to familial amyotrophic lateral sclerosis (ALS). Cu-ATSM is an orally bioavailable, blood-brain barrier permeable complex that has traditionally been used in cellular imaging experiments to selectively label hypoxic tissue via its susceptibility to reduction by oxygen-depleted mitochondria. More recently, Cu-ATSM has been reported to improve locomotor function and survival in a transgenic ALS mouse model by delivering copper specifically to cells in the spinal cords of mice producing misfolded SOD1 proteins. Copper chaperone for SOD (CCS) is presumed to utilize the copper from Cu-ATSM to prevent misfolding of the SOD1 protein.

Chemical Properties

Cas No. 68341-09-3 SDF
别名 copper-ATSM, CuII(atsm)
Canonical SMILES CC1=[N]2N=C(NC)S[Cu]23SC(NC)=N[N]3=C1C
分子式 C8H14CuN6S2 分子量 321.9
溶解度 DMF: 2 mg/ml,DMSO: 10 mg/ml,DMSO:PBS (pH 7.2)(1:9): 0.1 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1066 mL 15.5328 mL 31.0655 mL
5 mM 0.6213 mL 3.1066 mL 6.2131 mL
10 mM 0.3107 mL 1.5533 mL 3.1066 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

64Cu-ATSM/64Cu-Cl2 and their relationship to hypoxia in glioblastoma: a preclinical study

EJNMMI Res 2019 Dec 19;9(1):114.PMID:31858290DOI:10.1186/s13550-019-0586-6.

Background: Diacetyl-bis(N4-methylthiosemicarbazone), labeled with 64Cu (64Cu-ATSM) has been suggested as a promising tracer for imaging hypoxia. However, various controversial studies highlighted potential pitfalls that may disable its use as a selective hypoxic marker. They also highlighted that the results may be tumor location dependent. Here, we first analyzed uptake of Cu-ATSM and its less lipophilic counterpart Cu-Cl2 in the tumor over time in an orthotopic glioblastoma model. An in vitro study was also conducted to investigate the hypoxia-dependent copper uptake in tumor cells. We then further performed a comprehensive ex vivo study to compare 64Cu uptake to hypoxic markers, specific cellular reactions, and also transporter expression. Methods: μPET was performed 14 days (18F-FMISO), 15 days (64Cu-ATSM and 64Cu-Cl2), and 16 days (64Cu-ATSM and 64Cu-Cl2) after C6 cell inoculation. Thereafter, the brains were withdrawn for further autoradiography and immunohistochemistry. C6 cells were also grown in hypoxic workstation to analyze cellular uptake of Cu complexes in different oxygen levels. Results: In vivo results showed that Cu-ASTM and Cu-Cl2 accumulated in hypoxic areas of the tumors. Cu-ATSM also stained, to a lesser extent, non-hypoxic regions, such as regions of astrogliosis, with high expression of copper transporters and in particular DMT-1 and CTR1, and also characterized by the expression of elevated astrogliosis. In vitro results show that 64Cu-ATSM showed an increase in the uptake only in severe hypoxia at 0.5 and 0.2% of oxygen while for 64Cu-Cl2, the cell retention was significantly increased at 5% and 1% of oxygen with no significant rise at lower oxygen percentages. Conclusion: In the present study, we show that Cu-complexes undoubtedly accumulate in hypoxic areas of the tumors. This uptake may be the reflection of a direct dependency to a redox metabolism and also a reflection of hypoxic-induced overexpression of transporters. We also show that Cu-ATSM also stained non-hypoxic regions such as astrogliosis.

Identification and quantitative structure-activity relationship assessment of trace chemical impurities contained in the therapeutic formulation of [64Cu]Cu-ATSM

Nucl Med Biol 2022 May-Jun;108-109:10-15.PMID:35168008DOI:10.1016/j.nucmedbio.2022.02.001.

Background: [64Cu]Cu-diacethyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent, and the efficacy and safety of [64Cu]Cu-ATSM in the treatment of malignant brain tumors are evaluated in clinical trials. For the clinical application of [64Cu]Cu-ATSM, we determined a drug formulation incorporating a stabilizer against radiolysis and confirmed its radiochemical stability. This study aimed to identify trace chemical impurities derived from the degradation of ATSM contained in the [64Cu]Cu-ATSM investigational drug formulation and assess their potential hazards by quantitative structure-activity relationship (QSAR) assessment. Methods: We hypothesized that the chemical impurities contained in the [64Cu]Cu-ATSM formulation were derived from the degradation of ATSM. Therefore, we first identified the degradants of ATSM using LC-MS/MS. ATSM was dissolved with the drug formulation of [64Cu]Cu-ATSM, except for 64Cu, and analyzed by LC-MS/MS at 0 and 48 h after sample preparation. Subsequently, the chemical impurities contained in the [64Cu]Cu-ATSM formulation were measured at 0, 5, and 24 h after preparation by HPLC, and the results were compared to the degradants of ATSM. The potential hazards of the chemical impurities contained in the [64Cu]Cu-ATSM formulation were assessed using the QSAR Toolbox (ver. 4.3). Results: Six ATSM degradants were detected and identified by LC-MS/MS analysis, indicating that the functional groups around the nitrogen and sulfur atoms of ATSM were affected. The same peaks were detected as trace chemical impurities in the [64Cu]Cu-ATSM formulation at 24 h, while no apparent peaks were detected at 0 and 5 h. The estimated LD50 values of these chemical impurities showed 4.31 mg/kg or more by QSAR assessment. In contrast, the estimated amount of each chemical impurity exposed to patients was 31.8 ng/kg or less per dose. The smallest margin between the amount of chemical impurities and smallest estimated LD50 value of the corresponding impurity was a ratio of approximately 1:700,000. Conclusions: We identified trace chemical impurities derived from ATSM in the [64Cu]Cu-ATSM formulation. This suggests that the potential risk of the systemic exposure of patients to these chemical impurities is substantially low.

64Cu-ATSM and 99mTc(CO)3-DCM20 potential in the early detection of rheumatoid arthritis

Mod Rheumatol 2021 Mar;31(2):350-356.PMID:32252574DOI:10.1080/14397595.2020.1751945.

Objectives: Molecular imaging constitutes a promising technique for the early detection of rheumatoid arthritis (RA). Macrophages and hypoxia play significant roles in inflamed synovium. In the present study, we evaluated the efficacy of radiopharmaceuticals that target macrophage mannose receptors (99mTc-labeled mannosylated dextran or 99mTc(CO)3-DCM20) and hypoxia (copper(II) diacetyl-di(N4-methylthiosemicarbazone) or Cu-ATSM) for the early detection of RA in collagen-induced arthritis (CIA) mice models. Methods: CIA model was developed in DBA/1 mice, and the clinical score for arthritis was visually assessed on a regular basis. Two biodistribution studies were performed in a paired-labeled format using 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) as a reference: (1) 99mTc(CO)3-DCM20 with 18F-FDG and (2) 67Cu-ATSM with 18F-FDG. Results: The accumulation levels of 99mTc(CO)3-DCM20 and 67Cu-ATSM in forepaws, hindpaws, and knee joints of CIA mice were significantly higher than that of control mice. In contrast, 18F-FDG uptake in hindpaws and knee joints showed no significant difference between CIA and control mice. The radioactivity levels of 99mTc(CO)3-DCM20 and 67Cu-ATSM were significantly correlated with the clinical scores for the paws. Conclusion: These results suggest the potential usefulness of 99mTc(CO)3-DCM20 and radiolabeled Cu-ATSM for the imaging and early detection of RA.

Focus on the Controversial Aspects of (64)Cu-ATSM in Tumoral Hypoxia Mapping by PET Imaging

Front Med (Lausanne) 2015 Aug 24;2:58.PMID:26380261DOI:10.3389/fmed.2015.00058.

Mapping tumor hypoxia is a great challenge in positron emission tomography (PET) imaging as the precise functional information of the biological processes is needed for many effective therapeutic strategies. Tumor hypoxia has been widely reported as a poor prognostic indicator and is often associated with tumor aggressiveness, chemo- and radio-resistance. An accurate diagnosis of hypoxia is a challenge and is crucial for providing accurate treatment for patients' survival benefits. This challenge has led to the emergence of new and novel PET tracers for the functional and metabolic characterization of tumor hypoxia non-invasively. Among these tracers, copper semicarbazone compound [64Cu]-diacetyl-bis(N (4)-methylthiosemicarbazone) (=64Cu-ATSM) has been developed as a tracer for hypoxia imaging. This review focuses on 64Cu-ATSM PET imaging and the concept is presented in two sections. The first section describes its in vitro development and pre-clinical testing and particularly its affinity in different cell lines. The second section describes the controversial reports on its specificity for hypoxia imaging. The review concludes that 64Cu-ATSM - more than a hypoxic tracer, exhibits tracer accumulation in tumor, which is linked to the redox potential and reactive oxygen species. The authors concluded that 64Cu-ATSNM is a marker of over-reduced cell state and thus an indirect marker for hypoxia imaging. The affinity of 64Cu-ATSM for over-reduced cells was observed to be a complex phenomenon. And to provide a definitive and convincing mechanism, more in vivo studies are needed to prove the diagnostic utility of 64Cu-ATSM.

A comparison of the behavior of (64)Cu-acetate and (64)Cu-ATSM in vitro and in vivo

J Nucl Med 2014 Jan;55(1):128-34.PMID:24337603DOI:10.2967/jnumed.113.119917.

(64)Cu-diacetyl-bis(N(4)-methylthiosemicarbazonate), (64)Cu-ATSM, continues to be investigated clinically as a PET agent both for delineation of tumor hypoxia and as an effective indicator of patient prognosis, but there are still aspects of the mechanism of action that are not fully understood. Methods: The retention of radioactivity in tumors after administration of (64)Cu-ATSM in vivo is substantially higher for tumors with a significant hypoxic fraction. This hypoxia-dependent retention is believed to involve the reduction of Cu-ATSM, followed by the loss of copper to cellular copper processing. To shed light on a possible role of copper metabolism in hypoxia targeting, we have compared (64)Cu retention in vitro and in vivo in CaNT and EMT6 cells or cancers after the administration of (64)Cu-ATSM or (64)Cu-acetate. Results: In vivo in mice bearing CaNT or EMT6 tumors, biodistributions and dynamic PET data are broadly similar for (64)Cu-ATSM and (64)Cu-acetate. Copper retention in tumors at 15 min is higher after injection of (64)Cu-acetate than (64)Cu-ATSM, but similar values result at 2 and 16 h for both. Colocalization with hypoxia as measured by EF5 immunohistochemistry is evident for both at 16 h after administration but not at 15 min or 2 h. Interestingly, at 2 h tumor retention for (64)Cu-acetate and (64)Cu-ATSM, although not colocalizing with hypoxia, is reduced by similar amounts by increased tumor oxygenation due to inhalation of increased O2. In vitro, substantially less uptake is observed for (64)Cu-acetate, although this uptake had some hypoxia selectivity. Although (64)Cu-ATSM is stable in mouse serum alone, there is rapid disappearance of intact complex from the blood in vivo and comparable amounts of serum bound activity for both (64)Cu-ATSM and (64)Cu-acetate. Conclusion: That in vivo, in the EMT6 and CaNT tumors studied, the distribution of radiocopper from (64)Cu-ATSM in tumors essentially mirrors that of (64)Cu-acetate suggests that copper metabolism may also play a role in the mechanism of selectivity of Cu-ATSM.