Home>>Natural Products>>5-FAM (5-Carboxyfluorescein)

5-FAM (5-Carboxyfluorescein) Sale

(Synonyms: 5-羧基荧光素; 5-Carboxyfluorescein) 目录号 : GC30102

An amine-reactive fluorescent probe

5-FAM (5-Carboxyfluorescein) Chemical Structure

Cas No.:76823-03-5

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥594.00
现货
100mg
¥540.00
现货
500mg
¥1,080.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5-Carboxyfluorescein is a single isomer derivative of 5(6)-carboxyfluorescein that can be used to fluorescently label biomolecules through the interaction of carboxylic acid with primary amines.1 It demonstrates excitation/emission maxima of 492 and 518 nm, respectively.

1.Fischer, R., Mader, O., Jung, G., et al.Extending the applicability of carboxyfluorescein in solid-phase synthesisBioconjug. Chem.14(3)653-660(2003)

Chemical Properties

Cas No. 76823-03-5 SDF
别名 5-羧基荧光素; 5-Carboxyfluorescein
Canonical SMILES O=C1OC2(C3=C(OC4=C2C=CC(O)=C4)C=C(O)C=C3)C5=C1C=C(C(O)=O)C=C5
分子式 C21H12O7 分子量 376.32
溶解度 DMSO : ≥ 31 mg/mL (82.38 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6573 mL 13.2866 mL 26.5731 mL
5 mM 0.5315 mL 2.6573 mL 5.3146 mL
10 mM 0.2657 mL 1.3287 mL 2.6573 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The synthesis and application of Fmoc-Lys(5-FAM) building blocks

Biopolymers 2013 Jul;100(4):347-55.23444261 PMC4260938

Fluorescence resonance energy transfer (FRET) peptide substrates are often utilized for protease activity assays. This study has examined the preparation of FRET triple-helical peptide (THP) substrates using 5-Carboxyfluorescein (5-FAM) as the fluorophore and 4,4-dimethylamino-azobenzene-4'-carboxylic acid (Dabcyl) as the quencher. The N(α)-(9-fluorenylmethoxycarbonyl)-N(ε)-(5-Carboxyfluorescein)-L-lysine [Fmoc-Lys(5-FAM)] building block was synthesized utilizing two distinct synthetic routes. The first involved copper complexation of Lys while the second utilized Fmoc-Lys with microwave irradiation. Both approaches allowed convenient production of a very pure final product at a reasonable cost. Fmoc-Lys(5-FAM) and Fmoc-Lys(Dabcyl) were incorporated into the sequence of a THP substrate utilizing automated solid-phase peptide synthesis protocols. A second substrate was assembled where (7-methoxycoumarin-4-yl)-acetyl (Mca) was the fluorophore and 2,4-dinitrophenyl (Dnp) was the quencher. Circular dichroism spectroscopy was used to determine the influence of the fluorophore/quencher pair on the stability of the triple-helix. The activity of the two substrates was examined with three matrix metalloproteinases (MMPs), MMP-1, MMP-13, and MT1-MMP. The combination of 5-FAM as fluorophore and Dabcyl as quencher resulted in a triple-helical substrate that, compared with the fluorophore/quencher pair of Mca/Dnp, had a slightly destabilized triple-helix but was hydrolyzed more rapidly by MMP-1 and MMP-13 and had greater sensitivity.

Double-Resonant Nanostructured Gold Surface for Multiplexed Detection

ACS Appl Mater Interfaces 2022 Feb 9;14(5):6417-6427.35089707 PMC8832399

A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∿75 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-Carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.

Construction of a ratiometric fluorescent probe for visual detection of urea in human urine based on carbon dots prepared from Toona sinensis leaves and 5-Carboxyfluorescein

Anal Chim Acta 2023 Feb 1;1240:340733.36641152 10.1016/j.aca.2022.340733

In this work, pH-sensitive blue fluorescent carbon dots (CDs) with high fluorescence quantum yield (17.24%) were synthesized by hydrothermal method using Toona sinensis leaves and ethylenediamine (EDA) as raw materials. The CDs can detect urea with a limit of detection (LOD) of 6.700 mmol L-1. For more sensitive detection of urea, we constructed a ratiometric fluorescent probe (CDs@5-FAM) using CDs and 5-Carboxyfluorescein (5-FAM). The CDs@5-FAM probe can rapidly and sensitively detect urea according to the changes of I514/I405, with LOD as low as 0.014 mmol L-1. Furthermore, with the help of a smartphone and RGB analysis software, urea's visual intelligent detection was realized using a CDs@5-FAM probe. The method proposed in this paper is consistent with the standard method, which indicates that the pH-sensitive ratiometric fluorescent probe CDs@5-FAM is accurate and reliable for practical application. It provides a new way for rapid and visual detection of urea.

Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

Sci Rep 2016 Nov 23;6:37705.27876876 PMC5120282

An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-Carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

OSTP as a novel peptide specifically targeting human ovarian cancer

Oncol Rep 2015 Aug;34(2):972-8.26081347 10.3892/or.2015.4066

Ovarian cancer is a disease that seriously threatens the health of women and results in a high mortality rate. The present study aimed to investigate the novel peptide OSTP (peptide for specifically targeting ovarian cancer) to provide new methods for the effective diagnosis and treatment of ovarian cancer. The nude mouse ovarian cancer model was established. With the use of phage peptide display in vivo, a novel 7-amino peptide for specific binding to ovarian cancer was screened from the FliTrx bacterial peptide display system. OSTP was compounded and labeled with fluorescent pigment 5-FAM. The specificity and affinity of OSTP were tested in the ovarian cancer cell line A2780 in vitro. The tumor-targeting assays of OSTP were performed in vivo by injecting 5-FAM-OSTP into tumor-bearing mice. Clinical tissue specimens were tested by fluorescence staining following the addition of 5-FAM-OSTP. We found that the peptide specifically bound to ovarian cancer A2780 cells. Cell fluorescence staining showed that 5-FAM-OSTP obviously and specifically bound to ovarian cancer A2780 cells, particularly to the cell membrane. One hour after i.v. peptide injection, 5-FAM-OSTP specifically targeted the tumor tissues in the tumor-bearing mice. In the human pathological sections, 5-FAM-OSTP exhibited strong specific binding to ovarian cancer tissues. The cell membrane and cytoplasm of the cells exhibited a fluorescent signal. This signal was more evident on the cell membrane. The present results suggest that OSTP is a potential strategy for the development of new diagnostic strategies and drug-targeted therapies for ovarian cancer.