Home>>Signaling Pathways>> Tyrosine Kinase>> EGFR>>Tarloxotinib bromide (TH-4000)

Tarloxotinib bromide (TH-4000) Sale

(Synonyms: TH-4000) 目录号 : GC32100

Tarloxotinib bromide (TH-4000) (TH-4000) 是一种不可逆的 EGFR/HER2 抑制剂。

Tarloxotinib bromide (TH-4000) Chemical Structure

Cas No.:1636180-98-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥6,025.00
现货
5mg
¥4,016.00
现货
10mg
¥6,694.00
现货
25mg
¥13,388.00
现货
50mg
¥18,743.00
现货
100mg
¥29,453.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Tarloxotinib bromide is an irreversible EGFR/HER2 inhibitor.

To confirm the mechanism of action, Tarloxotinib bromide is shown to be metabolized efficiently under hypoxia using a panel of human NSCLC cell lines (rate of TKI release 0.4-2.1 nM/hr/106 cells), a process that is inhibited by oxygen (TKI release 80% (538 vs 99 nM/kg; p

A prototypic WT EGFR driven xenograft model (A431) is used to benchmark Tarloxotinib bromide activity against each EGFR-TKI by 'retrotranslation' of reported plasma exposure for each agent in human subjects back to the xenograft model. Only treatment with clinically relevant doses and schedules of Tarloxotinib bromide is associated with tumor regression and durable inhibition of WT EGFR tumor phosphorylation. Consistent with these findings, Tarloxotinib bromide treatment can also regress the WT EGFR NSCLC tumor models H125 and H1648, demonstrating Tarloxotinib bromide provides the necessary therapeutic index to inhibit WT EGFR in vivo[1].

[1]. Shevan Silva, Abstract A67: Preclinical efficacy of tarloxotinib bromide (TH-4000), a hypoxia-activated EGFR/HER2 inhibitor: rationale for clinical evaluation in EGFR mutant, T790M-negative NSCLC following progression on EGFR-TKI therapy. Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; November 5-9, 2015; Boston, MA. [2]. Adam V. Patterson, Abstract 5358: The hypoxia-activated EGFR-TKI TH-4000 overcomes erlotinib-resistance in preclinical NSCLC models at plasma levels achieved in a Phase 1 clinical trial. AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA.

Tarloxotinib 溴化物是一种不可逆的 EGFR/HER2 抑制剂。

为了确认作用机制,Tarloxotinib 溴化物在一组人类 NSCLC 细胞系(TKI 释放速率0.4-2.1 nM/hr/106 个细胞),一个被氧气抑制的过程(TKI 释放 80%(538 对 99 nM/kg;p

原型 WT EGFR 驱动的异种移植模型 (A431) 用于基准 Tarloxotinib 溴化物活性每个 EGFR-TKI 通过将人类受试者中每种药物的报告血浆暴露"逆转录"回异种移植模型。只有使用临床相关剂量和时间表的 Tarloxotinib 溴化物治疗才与肿瘤消退和 WT EGFR 肿瘤磷酸化的持久抑制相关。与这些发现一致,Tarloxotinib 溴化物治疗也可以使 WT EGFR NSCLC 肿瘤模型 H125 和 H1648 消退,证明 Tarloxotinib 溴化物提供了体内抑制 WT EGFR 的必要治疗指数[1]。

Chemical Properties

Cas No. 1636180-98-7 SDF
别名 TH-4000
Canonical SMILES BrC1=C(Cl)C=CC(NC2=NC=NC3=C2C=C(NC(/C=C/C[N+](C)(C)CC4=C([N+]([O-])=O)N=CN4C)=O)N=C3)=C1.[Br-]
分子式 C24H24Br2ClN9O3 分子量 681.77
溶解度 DMSO : ≥ 33 mg/mL (48.40 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4668 mL 7.3339 mL 14.6677 mL
5 mM 0.2934 mL 1.4668 mL 2.9335 mL
10 mM 0.1467 mL 0.7334 mL 1.4668 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Targeting Hypoxia to Improve Non-Small Cell Lung Cancer Outcome

J Natl Cancer Inst 2018 Jan 1;110(1).PMID:28922791DOI:10.1093/jnci/djx160.

Oxygen deprivation (hypoxia) in non-small cell lung cancer (NSCLC) is an important factor in treatment resistance and poor survival. Hypoxia is an attractive therapeutic target, particularly in the context of radiotherapy, which is delivered to more than half of NSCLC patients. However, NSCLC hypoxia-targeted therapy trials have not yet translated into patient benefit. Recently, early termination of promising evofosfamide and Tarloxotinib bromide studies due to futility highlighted the need for a paradigm shift in our approach to avoid disappointments in future trials. Radiotherapy dose painting strategies based on hypoxia imaging require careful refinement prior to clinical investigation. This review will summarize the role of hypoxia, highlight the potential of hypoxia as a therapeutic target, and outline past and ongoing hypoxia-targeted therapy trials in NSCLC. Evidence supporting radiotherapy dose painting based on hypoxia imaging will be critically appraised. Carefully selected hypoxia biomarkers suitable for integration within future NSCLC hypoxia-targeted therapy trials will be examined. Research gaps will be identified to guide future investigation. Although this review will focus on NSCLC hypoxia, more general discussions (eg, obstacles of hypoxia biomarker research and developing a framework for future hypoxia trials) are applicable to other tumor sites.