Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Poly(4-vinylphenol)

Poly(4-vinylphenol) Sale

(Synonyms: 聚(4-乙基苯酚)) 目录号 : GC38689

Poly(4-vinylphenol) 是一种内源性代谢产物。

Poly(4-vinylphenol) Chemical Structure

Cas No.:24979-70-2

规格 价格 库存 购买数量
Free Sample (0.1-0.5 mg) 待询 待询
100mg
¥450.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Poly(4-vinylphenol) is an endogenous metabolite.

Chemical Properties

Cas No. 24979-70-2 SDF
别名 聚(4-乙基苯酚)
Canonical SMILES OC1=CC=C(C(C)CC)C=C1.[n]
分子式 (C8H8O)x 分子量
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Poly(4-vinylphenol-co-methyl methacrylate)/Hafnium Oxide Nanocomposite Gate Insulators for Organic Thin-Film Transistors

J Nanosci Nanotechnol 2020 Jul 1;20(7):4188-4192.PMID:31968439DOI:10.1166/jnn.2020.17567.

We fabricate 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) thin-film transistors (TFTs) with nanocomposite insulators. The insulator layers consist of both Poly(4-vinylphenol-co-methyl methacrylate) and high-dielectric constant hafnium oxide (HfO₂) nanoparticles. The HfO₂ nanoparticles are ball-milled for sufficient dispersion in a nanocomposite solution to enable solution process methods to be used in preparing the insulator layers. The nanocomposite insulators demonstrate high capacitances and improve the performance of TIPS-Pn TFTs. Nonetheless, particle aggregates are produced in the nanocomposites solution with high HfO₂ concentrations, generating detrimental effects on the dielectric properties and the TFT performance. Our experimental result implies that the optimum concentration of HfO₂ nanoparticles in a mixed solution will find to be ~11.5 wt%.

Development of Coarse-Grained Models for Poly(4-vinylphenol) and Poly(2-vinylpyridine): Polymer Chemistries with Hydrogen Bonding

Polymers (Basel) 2020 Nov 23;12(11):2764.PMID:33238611DOI:10.3390/polym12112764.

In this paper, we identify the modifications needed in a recently developed generic coarse-grained (CG) model that captured directional interactions in polymers to specifically represent two exemplary hydrogen bonding polymer chemistries-poly(4-vinylphenol) and poly(2-vinylpyridine). We use atomistically observed monomer-level structures (e.g., bond, angle and torsion distribution) and chain structures (e.g., end-to-end distance distribution and persistence length) of Poly(4-vinylphenol) and poly(2-vinylpyridine) in an explicitly represented good solvent (tetrahydrofuran) to identify the appropriate modifications in the generic CG model in implicit solvent. For both chemistries, the modified CG model is developed based on atomistic simulations of a single 24-mer chain. This modified CG model is then used to simulate longer (36-mer) and shorter (18-mer and 12-mer) chain lengths and compared against the corresponding atomistic simulation results. We find that with one to two simple modifications (e.g., incorporating intra-chain attraction, torsional constraint) to the generic CG model, we are able to reproduce atomistically observed bond, angle and torsion distributions, persistence length, and end-to-end distance distribution for chain lengths ranging from 12 to 36 monomers. We also show that this modified CG model, meant to reproduce atomistic structure, does not reproduce atomistically observed chain relaxation and hydrogen bond dynamics, as expected. Simulations with the modified CG model have significantly faster chain relaxation than atomistic simulations and slower decorrelation of formed hydrogen bonds than in atomistic simulations, with no apparent dependence on chain length.

Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage

ACS Appl Mater Interfaces 2017 Aug 16;9(32):27073-27082.PMID:28777534DOI:10.1021/acsami.7b07549.

In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (105), excellent cyclic endurance (>103), and long retention time (>104 s), where poly-4-vinylphenol (PVP)/Poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

A Study of C=O…HO and OH…OH (Dimer, Trimer, and Oligomer) Hydrogen Bonding in a Poly(4-vinylphenol) 30%/Poly(methyl methacrylate) 70% Blend and its Thermal Behavior Using Near-Infrared Spectroscopy and Infrared Spectroscopy

Appl Spectrosc 2022 Jul;76(7):831-840.PMID:35255723DOI:10.1177/00037028221086913.

Inter- and intramolecular hydrogen bonding and their temperature-dependent changes in a Poly(4-vinylphenol)/poly(methyl methacrylate)(PVPh 30%/PMMA 70%) blend were investigated using near-infrared (NIR) and infrared (IR) spectroscopy. Band assignments of the fundamentals and first overtones of the OH stretching mode of a free OH group and OH groups in C=O···HO and OH···OH (dimer, trimer, and oligomer) hydrogen bonding of PVPh 30%/PMMA 70% were carried out by comparison between its NIR and IR spectra and comparison with NIR and IR spectra of phenol. The comparison of the NIR spectra of the PVPh 30%/PMMA 70% blend (hereafter, we denote it as PVPh30%) with the corresponding IR spectra reveals that to observe bands arising from the free OH and OH···OH dimer, which is a weaker hydrogen bonding, NIR is better while to investigate bands originating from OH groups in the OH···O=C and OH···OH (oligomer) hydrogen bonds, which are stronger hydrogen bonding, IR is better. Thus, a combination of IR and NIR spectroscopy has provided convincing results for the hydrogen bonding of PVPh30%. The relative intensity of the two bands at 7058 and 6921 cm-1 (I7058/I6921) due to the first overtones of the OH stretching modes of the free OH group and the OH group in the dimer, respectively, increases significantly above 90 °C, which is close to Tg of PVPh. In concomitance with the intensity increase in the relative intensity of the free OH band, the intensity of a band at 1706 cm-1 due to the C=O stretching mode of the C=O···HO hydrogen bond of PVPh30% decreases above 90°C. These results suggest that above the Tg of PVPh the C=O···HO hydrogen bond is broken gradually and that the free OH increases. Of note is that below Tg the intensities of NIR bands due to the OH first overtones of free OH group and OH groups in the OH···OH dimer gain intensity in parallel with temperature increase, and above Tg the intensity of the band derived from the OH···OH group increases linearly much slower than that of the band due to the free OH. Moreover, a band due to an OH···OH oligomer decreases linearly. Hence, it is very likely that the OH···OH oligomers dissociate into free OH groups. Anharmonicity of O-H bonds, which is sensitive to a hydrogen bond, was estimated for the free OH and OH bonds in the C=O···HO and OH···OH (dimer, trimer, and oligomer) hydrogen bonding by comparison between the NIR and IR spectra in the OH stretching band regions.

Ionization of covalent immobilized Poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

Appl Surf Sci 2015 Jul 15;343:166-171.PMID:26097271DOI:10.1016/j.apsusc.2015.03.014.

Covalently immobilized Poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surface followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.