Home>>Signaling Pathways>> Stem Cell>> GSK-3>>VP3.15

VP3.15 Sale

目录号 : GC37923

VP3.15 是高效、口服生物可利用的, CNS 可渗透的 PDE7-GSK3 双重抑制剂,对 PDE7 和 GSK3 作用的 IC50 值分别为 1.59 μM 和 0.88 μM。VP3.15 具有神经保护和神经修复活性,是多发性硬化症 (MS) 潜在的抗炎和促髓鞘再生联合治疗药物。

VP3.15 Chemical Structure

Cas No.:1281681-54-6

规格 价格 库存 购买数量
1mg 待询 待询
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

VP3.15 is a potent, orally bioavailable and CNS-penetrant dual phosphodiesterase (PDE)7- glycogen synthase kinase (GSK)3 inhibitor, with IC50s of 1.59 μM and 0.88 μM for PDE7 and GSK-3, respectively. VP3.15 has neuroprotective and neuroreparative activities, thus as potential combined anti-inflammatory and pro-remyelinating therapies for multiple sclerosis (MS)[1]. IC50: 1.59 μM (PDE7), 0.88 μM (GSK-3)[1]

[1]. Medina-RodrÍguez EM, et al. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis. Sci Rep. 2017 Mar 3;7:43545.

Chemical Properties

Cas No. 1281681-54-6 SDF
Canonical SMILES N1(CC/N=C2N=C(C3=CC=CC=C3)N(C4=CC=CC=C4)S/2)CCOCC1
分子式 C20H22N4OS 分子量 366.48
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7287 mL 13.6433 mL 27.2866 mL
5 mM 0.5457 mL 2.7287 mL 5.4573 mL
10 mM 0.2729 mL 1.3643 mL 2.7287 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The Dual PDE7-GSK3β Inhibitor, VP3.15, as Neuroprotective Disease-Modifying Treatment in a Model of Primary Progressive Multiple Sclerosis

Int J Mol Sci 2022 Nov 19;23(22):14378.PMID:36430856DOI:10.3390/ijms232214378.

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune and degenerative disease with axonal damage and demyelination as its main features. Its dual neurological and autoimmune nature makes it a disease that is difficult to treat. Treatments that simultaneously stop the immune response while protecting and repairing the nervous system are urgent. That is of utmost importance for the primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS, characterized by worsening neurological function from the onset of symptoms. In this sense, inhibitors of glycogen synthase kinase 3β (GSK3β) and phosphodiesterase 7 (PDE7) have recently shown great therapeutic potential for the treatment of demyelinating diseases. Here we investigated a dual inhibitor of these two targets, the small molecule VP3.15, in a preclinical model, which resembles primary-progressive MS (PPMS), the Theiler's mouse encephalomyelitis virus-induced demyelinated disease (TMEV-IDD). In our study, VP3.15 ameliorates the disease course improving motor deficits of infected mice. Chronic treatment with VP3.15 also showed significant efficacy in the immunomodulation process, as well as in the proliferation and differentiation of oligodendroglial precursors, improving the preservation of myelin and axonal integrity. Therefore, our results support a treatment with the safe VP3.15 as an integrative therapeutic strategy for the treatment of PPMS.

A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice

J Chem Neuroanat 2017 Mar;80:27-36.PMID:28007551DOI:10.1016/j.jchemneu.2016.12.001.

cAMP plays a significant role in signal transduction pathways controlling multiple cellular processes such as inflammation and immune regulation. cAMP levels are regulated by a family of phosphodiesterases (PDEs). We have studied the effects of a novel PDE7 inhibitor (PDE7i) treatment on mice with experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS) and compared it with another PDE7i. EAE was induced by immunizing C57BL/6J mice with myelin oligodendrocyte glycoprotein (MOG35-55) peptide. Mice were treated daily either from disease onset or from disease peak with each PDE7i and with fingolimod (used in therapy for MS patients) and disease evolution was followed by clinical symptoms. We examined neuropathology of spinal cord, ex vivo lymphocyte proliferation by [3H]-thymidine incorporation, TNFα by ELISA and cAMP-PDE mRNAs expression by in situ hybridization histochemistry (ISHH) in spinal cord of EAE mice treated with both PDE7 inhibitors. Treatment of EAE mice with the novel PDE7i, VP3.15 showed more efficacy in reducing clinical signs at 10mgkg-1 than the other PDE7i, BRL50481 and similar to fingolimod. VP3.15 acts on peripheral lymphocytes inhibiting their proliferation and TNFα secretion in a dose-dependent manner. PDE7i treatment alters the levels of PDE4B and PDE7 mRNA expression in EAE mice spinal cord. Given the interest in the development of new drugs for MS, including PDE7i as anti-inflammatory drugs, it is important to study the role played by PDE7 in neurodegenerative diseases with inflammatory component to better understand the beneficial and detrimental effects of a future therapy.

Pharmacological modulation of phosphodiesterase-7 as a novel strategy for neurodegenerative disorders

Inflammopharmacology 2022 Dec;30(6):2051-2061.PMID:36272040DOI:10.1007/s10787-022-01072-1.

Neurodegenerative illness develops as a result of genetic defects that cause changes at numerous levels, including genomic products and biological processes. It entails the degradation of cyclic nucleotides, cyclic adenosine monophosphate (cAMP), and cyclic guanosine monophosphate (cGMP). PDE7 modulates intracellular cAMP signalling, which is involved in numerous essential physiological and pathological processes. For the therapy of neurodegenerative illnesses, the normalization of cyclic nucleotide signalling through PDE inhibition remains intriguing. In this article, we shall examine the role of PDEs in neurodegenerative diseases. Alzheimer's disease, Multiple sclerosis, Huntington's disease, Parkinson's disease, Stroke, and Epilepsy are related to alterations in PDE7 expression in the brain. Earlier, animal models of neurological illnesses including Alzheimer's disease, Parkinson's disease, and multiple sclerosis have had significant results to PDE7 inhibitors, i.e., VP3.15; VP1.14. In addition, modulation of CAMP/CREB/GSK/PKA signalling pathways involving PDE7 in neurodegenerative diseases has been addressed. To understand the etiology, treatment options of these disorders mediated by PDE7 and its subtypes can be the focus of future research.

Dynamics of Central Remyelination and Treatment Evolution in a Model of Multiple Sclerosis with Optic Coherence Tomography

Int J Mol Sci 2021 Feb 28;22(5):2440.PMID:33671012DOI:10.3390/ijms22052440.

The need for remyelinating drugs is essential for healing disabling diseases such as multiple sclerosis (MS). One of the reasons for the lack of this class of therapies is the impossibility to monitor remyelination in vivo, which is of utmost importance to perform effective clinical trials. Here, we show how optical coherence tomography (OCT), a cheap and non-invasive technique commonly used in ophthalmology, may be used to assess remyelination in vivo in MS patients. Our pioneer approach validates OCT as a technique to study remyelination of the optic nerve and reflects what is occurring in non-accessible central nervous system (CNS) structures, like the spinal cord. In this study we used the orally bioavailable small molecule VP3.15, confirming its therapeutical potential as a neuroprotective, anti-inflammatory, and probably remyelinating drug for MS. Altogether, our results confirm the usefulness of OCT to monitor the efficacy of remyelinating therapies in vivo and underscore the relevance of VP3.15 as a potential disease modifying drug for MS therapy.

Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa

Mol Neurodegener 2018 Apr 16;13(1):19.PMID:29661219DOI:10.1186/s13024-018-0251-y.

Background: Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Methods: Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. Results: In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3βSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. Conclusions: These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.