Home>>Signaling Pathways>> Neuroscience>> 5-HT Receptor>>SB 258719

SB 258719 Sale

目录号 : GC37596

SB 258719 是一个有选择性的 5-HT7 受体拮抗剂,其 pKi 值为 7.5。

SB 258719 Chemical Structure

Cas No.:195199-95-2

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,337.00
现货
5mg
¥1,215.00
现货
10mg
¥1,944.00
现货
25mg
¥3,888.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

SB 258719 is a selective 5-HT7 receptor antagonist with a pKi of 7.5. pKi: 7.5 (5-HT7 receptor)

[1]. Thomas DR, et al. Functional characterisation of the human cloned 5-HT7 receptor (long form); antagonist profile of SB-258719. Br J Pharmacol. 1998 Jul;124(6):1300-6.

Chemical Properties

Cas No. 195199-95-2 SDF
Canonical SMILES O=S(C1=CC=CC(C)=C1)(N(C)[C@H](C)CCN2CCC(C)CC2)=O
分子式 C18H30N2O2S 分子量 338.51
溶解度 DMSO: 250 mg/mL (738.53 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.9541 mL 14.7706 mL 29.5412 mL
5 mM 0.5908 mL 2.9541 mL 5.9082 mL
10 mM 0.2954 mL 1.4771 mL 2.9541 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex

Am J Physiol Gastrointest Liver Physiol 2010 Jul;299(1):G144-57.PMID:20413719DOI:10.1152/ajpgi.00496.2009.

The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa. Spontaneous CMMCs were recorded from the CM in isolated murine colons but not in preparations without the mucosa. In mucosaless preparations, ondansetron (3 microM; 5-HT(3) antagonist) plus hexamethonium (100 microM) completely blocked spontaneous inhibitory junction potentials, depolarized the CM. Ondansetron blocked the preceding hyperpolarization associated with a CMMC. Spontaneous CMMCs and CMMCs evoked by spritzing 5-HT (10 and 100 microM) or nerve stimulation in preparations without the mucosa were blocked by SB 258719 or SB 269970 (1-5 microM; 5-HT(7) antagonists). Both NAN-190 and (S)-WAY100135 (1-5 microM; 5-HT(1A) antagonists) blocked spontaneous CMMCs and neurally evoked CMMCs in preparations without the mucosa. Both NAN-190 and (S)-WAY100135 caused an atropine-sensitive depolarization of the CM. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP) (10 microM), and 5-carboxamidotryptamine (5-CT) (5 microM; 5-HT(1/5/7) agonist) increased the frequency of spontaneous CMMCs. 5-HTP and 5-CT also induced CMMCs in preparations with and without the mucosa, which were blocked by SB 258719. 5-HT(1A), 5-HT(3), and 5-HT(7) receptors, most likely on Dogiel Type II/AH neurons, are important in initiating, generating, and propagating the CMMC. Tonic inhibition of the CM appears to be driven by ongoing activity in descending serotonergic interneurons; by activating 5-HT(7) receptors on AH neurons these interneurons also contribute to the generation of the CMMC.

Evidence that 5-hydroxytryptamine(7) receptors play a role in the mediation of afferent transmission within the nucleus tractus solitarius in anaesthetized rats

Br J Pharmacol 2009 Nov;158(5):1387-94.PMID:19785653DOI:10.1111/j.1476-5381.2009.00410.x.

Background and purpose: Central 5-hydroxytryptamine (5-HT)-containing pathways utilizing 5-HT(7) receptors are known to be critical for the mediation of cardiovascular reflexes. The nucleus tractus solitarius (NTS) is a site involved in the integration of cardiovascular afferent information. The present experiments examined the involvement of the 5-HT(7) receptor in the processing of cardiovascular reflexes in the NTS. Experimental approach: In anaesthetized rats extracellular recordings were made from 104 NTS neurones that were excited by electrical stimulation of the vagus nerve and/or activation of cardiopulmonary afferents. Drugs were applied ionophoretically in the vicinity of these neurones. Key results: The non-selective 5-HT(7) receptor agonist 5-carboxamidotryptamine maleate (5-CT) applied to 78 neurones increased the firing rate in 18 by 59% and decreased it in 38 neurones by 47%. Similarly, the 5-HT(1A) agonist 8-OH-DPAT applied to 20 neurones had an excitatory (8), inhibitory (7) or no effect (5) on the 20 neurones tested. In the presence of the 5-HT(7) antagonist SB 258719 the 5-CT excitation was attenuated. Furthermore, the excitatory response of NTS neurones evoked by electrical stimulation of the vagus nerve or activation of cardiopulmonary afferents with intra atrial phenylbiguanide was attenuated by SB 258719. The inhibitory action of 5-CT was unaffected by SB 258719 and the 5-HT(1A) antagonist WAY-100635. WAY-100635 failed to have any effect on 5-CT and vagal afferent-evoked excitations. Conclusions and implications: Vagal afferent-evoked excitation of NTS neurones can be blocked by SB 258719, a selective 5-HT(7) antagonist. This observation further supports the involvement of 5-HT neurotransmission in NTS afferent processing.