Home>>Signaling Pathways>> Proteases>> Drug Metabolite>>Flumazenil acid

Flumazenil acid Sale

(Synonyms: 4H-咪唑并[1,5-A][1,4]苯并二氮杂环庚烷-3-甲酸,8-氟-5,6-二氢-5-甲基-6-氧代-,Ro 15-3890) 目录号 : GC36058

Flumazenil acid 是 Flumazenil 的一种代谢产物。Flumazenil 是一种 GABAA 受体拮抗剂。

Flumazenil acid Chemical Structure

Cas No.:84378-44-9

规格 价格 库存 购买数量
1mg 待询 待询
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Flumazenil acid is a metabolite of Flumazenil[1]. Flumazenil is a GABAA receptor antagonist[2].

[1]. Kleingeist B, et al. Isolation and pharmacological characterization of microsomal human liver flumazenil carboxylesterase. J Pharm Pharm Sci. 1998 Jan-Apr;1(1):38-46. [2]. Mograbi KM, et al. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep. 2017 Mar;5(6). pii: e13081.

Chemical Properties

Cas No. 84378-44-9 SDF
别名 4H-咪唑并[1,5-A][1,4]苯并二氮杂环庚烷-3-甲酸,8-氟-5,6-二氢-5-甲基-6-氧代-,Ro 15-3890
Canonical SMILES O=C(O)C1=C(N(C2=CC=C(C=C2C3=O)F)C=N1)CN3C
分子式 C13H10FN3O3 分子量 275.24
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.6332 mL 18.166 mL 36.3319 mL
5 mM 0.7266 mL 3.6332 mL 7.2664 mL
10 mM 0.3633 mL 1.8166 mL 3.6332 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Isolation and pharmacological characterization of microsomal human liver flumazenil carboxylesterase

J Pharm Pharm Sci 1998 Jan-Apr;1(1):38-46.PMID:10942971doi

Purpose: In vivo the biotransformation of the imidazobenzodiazepine antagonist flumazenil leads to the formation of two metabolites, Flumazenil acid and N-demethylated flumazenil. In the present study we investigated the role of carboxylesterases for the metabolism of flumazenil. Methods: We purified a non-specific carboxylesterase (EC 3.1.1.1) from human liver microsomes that catalyzes the hydrolysis of flumazenil to Flumazenil acid and, in presence of methanol the formation of flumazenil methyl ester an in vivo unknown metabolite. The purification procedure included solubilization of the microsomes obtained from human livers with Triton X-100 and subsequent chromatography of the 100,000 x g supernatant on blue-sepharose, DEAE-sepharose, hydroxyapatite and final chromatofocusing. Results: The purified esterase isozyme exhibited an apparent subunit molecular weight of 59 kDa as estimated by SDS gelelectrophoresis, a native molecular weight of 170 kDa determined by a calibrated gel filtration column suggesting that the active enzyme is a trimer. The isoelectric point of the enzyme was approximately 5.4. The specific activities of the purified enzyme were 5.8 nmol/(min*mg protein) protein for the formation of Flumazenil acid and 31 nmol/(min*mg protein) for the synthesis of the flumazenil methylester. The purified enzyme obeys simple Michaelis-Menten kinetics with K(M) values of 665 microM for Flumazenil acid, 1011 mM for methanol and 900 microM for the flumazenil methylester. PMSF, a specific inhibitor for serine proteases and mammalian acetylcholinesterase, completely inhibited the formation of flumazenil -acid and the flumazenil methylester at a concentration of 100 microM. No synthesis of the flumazenil -methylester could be observed by incubation of the purified esterase with Flumazenil acid in the presence of methanol leading to the conclusion that the enzymatically catalyzed reaction is a transesterification. The purified esterase was digested with endoproteinase LysC. A 15 amino acid long peptide was isolated and showed identical matches to carboxylesterase cDNAs from human liver and lung. Conclusion: Our results show that carboxylesterase isozymes play an important role in the detoxification and metabolism of flumazenil. Because of enzymatic, catalytic and structural properties a similarity of the characterized flumazenil carboxylesterase with human liver cocaine carboxylesterase is possible.