Home>>Signaling Pathways>> Others>> Others>>4-Hydroxyindole

4-Hydroxyindole Sale

(Synonyms: 4-羟基吲哚) 目录号 : GC61760

4-Hydroxyindole是一类羟基吲哚类,其4位上的1H-吲哚被羟基取代。4-Hydroxyindole是医药产品和工业聚合物合成的重要原料或中间体。

4-Hydroxyindole Chemical Structure

Cas No.:2380-94-1

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥385.00
现货
100 mg
¥350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

4-Hydroxyindole is a member of the class of hydroxyindoles that is 1H-indole substituted by a hydroxy group at position 4. 4-Hydroxyindole is an important raw material or intermediate in the synthesis of pharmaceutical products and industrial polymers[1].

[1]. Nenad Manevski, et al. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases. Drug Metab Dispos. 2010 Mar;38(3):386-95.

Chemical Properties

Cas No. 2380-94-1 SDF
别名 4-羟基吲哚
Canonical SMILES OC1=CC=CC2=C1C=CN2
分子式 C8H7NO 分子量 133.15
溶解度 DMSO: 15.71 mg/mL (117.99 mM); Water: 1.43 mg/mL (10.74 mM) 储存条件 4°C, protect from light, stored under nitrogen
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.5103 mL 37.5516 mL 75.1033 mL
5 mM 1.5021 mL 7.5103 mL 15.0207 mL
10 mM 0.751 mL 3.7552 mL 7.5103 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Glucuronidation of psilocin and 4-Hydroxyindole by the human UDP-glucuronosyltransferases

Drug Metab Dispos 2010 Mar;38(3):386-95.PMID:20007669DOI:10.1124/dmd.109.031138.

We have examined the glucuronidation of psilocin, a hallucinogenic indole alkaloid, by the 19 recombinant human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B. The glucuronidation of 4-Hydroxyindole, a related indole that lacks the N,N-dimethylaminoethyl side chain, was studied as well. UGT1A10 exhibited the highest psilocin glucuronidation activity, whereas the activities of UGTs 1A9, 1A8, 1A7, and 1A6 were significantly lower. On the other hand, UGT1A6 was by far the most active enzyme mediating 4-Hydroxyindole glucuronidation, whereas the activities of UGTs 1A7-1A10 toward 4-Hydroxyindole resembled their respective psilocin glucuronidation rates. Psilocin glucuronidation by UGT1A10 followed Michaelis-Menten kinetics in which psilocin is a low-affinity high-turnover substrate (K(m) = 3.8 mM; V(max) = 2.5 nmol/min/mg). The kinetics of psilocin glucuronidation by UGT1A9 was more complex and may be best described by biphasic kinetics with both intermediate (K(m1) = 1.0 mM) and very low affinity components. The glucuronidation of 4-Hydroxyindole by UGT1A6 exhibited higher affinity (K(m) = 178 microM) and strong substrate inhibition. Experiments with human liver and intestinal microsomes (HLM and HIM, respectively) revealed similar psilocin glucuronidation activity in both samples, but a much higher 4-Hydroxyindole glucuronidation rate was found in HLM versus HIM. The expression levels of UGTs 1A6-1A10 in different tissues were studied by quantitative real-time-PCR, and the results, together with the activity assays findings, suggest that whereas psilocin may be subjected to extensive glucuronidation by UGT1A10 in the small intestine, UGT1A9 is likely the main contributor to its glucuronidation once it has been absorbed into the circulation.

Synthetic studies toward inducamide C

Org Biomol Chem 2021 Jan 21;19(2):416-420.PMID:33313627DOI:10.1039/d0ob01995j.

The alkaloid inducamide C is proposed to contain a very rare benzoxazepine ring. Herein, we report that the benzoxazepine ring in inducamide C is unstable and prone to rearrangement, indicating that structural revision of the natural product may be necessary. In a first-generation synthetic approach, attempts to assemble the benzoxazepine by cyclization of 4-hydroxyinducamide A led to the regioisomeric oxepanoindole, a result of the 4-Hydroxyindole (C4-OH) undergoing preferential cyclization instead of the desired chlorosalicylic acid C15-OH. A second-generation approach involved dealkylation of O-isopropylinducamide C, but the same oxepanoindole formed via rearrangement of the proposed inducamide C structure. Computational studies validate preferential formation of the oxepanoindole and the lactone in O-isopropylinducamide C is susceptible to nucleophilic attack. Thus, inducamide C is either highly unstable or in need of structural revision.

Ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with amines: rapid access to 2-substituted 4-Hydroxyindole

Org Lett 2014 Aug 1;16(15):4012-5.PMID:25033094DOI:10.1021/ol501837b.

An efficient ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with primary amines has been developed. The reaction proceeded at room temperature without any additives to provide 2-substituted tetrahydroindol-4-ones in good to excellent yields without the formation of the 3-substituted isomers. The obtained product was readily converted into a 2-substituted 4-Hydroxyindole derivative via a synthetically useful indoline intermediate.

[Novel Methods for the Synthesis of Heterocycles Using Highly Reactive Spirocyclopropanes]

Yakugaku Zasshi 2018;138(1):19-25.PMID:29311461DOI:10.1248/yakushi.17-00188.

This review describes our recent efforts to develop efficient methods for the synthesis of heterocyclic compounds, such as indoles and benzofurans, employing ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes, which were prepared by the reaction of 1,3-cyclohexanediones with sulfonium salts. Ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with primary amines proceeded at room temperature to provide 2-substituted tetrahydroindol-4(5H)-ones in good to excellent yield. The obtained product was readily converted into a 2-substituted 4-Hydroxyindole derivative. Furthermore, acid-catalyzed ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes proceeded smoothly at room temperature to provide 2-substituted tetrahydrobenzofuran-4(2H)-ones in excellent yield. The obtained product was converted into a 2-substituted 4-hydroxybenzofuran derivative. The synthetic utility of this catalytic protocol was demonstrated by the total synthesis of cuspidan B.

Extraction and Purification of Laccases from Rice Stems

Bio Protoc 2019 Apr 5;9(7):e3208.PMID:33655003DOI:10.21769/BioProtoc.3208.

Laccases are found in cell walls of plants in very low amounts. This protocol provides an efficient method to purify laccases from rice stems. The method involves three steps: 1) Isolation of total protein from rice stems using buffers with high salt concentration to extract protein from cell walls; 2) Purification of laccases using concanavalin-A beads; and, 3) In-gel staining of laccases with 4-Hydroxyindole. Concanavalin-A specifically binds to internal or non-reducing terminal α-D-mannosyl and α-D-glucosyl groups found in glycoproteins and glycolipids. Laccases being glycoproteins binds to concanavalin-A during purification process and eluted with mannose.