Home>>Signaling Pathways>> Neuroscience>> GABA Receptor>>TPA 023

TPA 023 Sale

目录号 : GC30865

TPA023是GABAAα2/α3的选择性的激动剂,Ki值为0.19-0.41nM。

TPA 023 Chemical Structure

Cas No.:252977-51-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥6,911.00
现货
1mg
¥4,016.00
现货
5mg
¥7,943.00
现货
10mg
¥14,280.00
现货
20mg
¥24,722.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

TPA 023 is a GABAA α2/α3 subtype-selective agonist, with Ki of 0.19-0.41 nM.

TPA023 displays good receptor occupancy, when administered orally to rats. The dose of TPA023 resulting in 50% occupancy of rat brain GABAA receptors is 0.42 mg/kg, with the corresponding plasma concentration being 25 ng/mL. TPA023 is also efficacious in the mouse pentylenetetrazole-induced seizure model, providing full seizure protection at a dose of 10 mg/kg i.p. (84% occupancy), with the ED50 of 0.19-0.41 nM, for protection against tonic convulsions (1.4 mg/kg i.p.) corresponding to around 50% occupancy. TPA023 (3 mg/kg p.o. in 0.5% methyl cellulose) shows anxiolytic-like effect on rats[1]. TPA023 (0.7, 2.0, and 5 mg/kg, p.o.) blocks ketamine's cognitive-impairing ability but does not influence the behavioral symptoms of rhesus monkeys[2].

[1]. Atack JR. Subtype-selective GABA(A) receptor modulation yields a novel pharmacological profile: the design and development of TPA023. Adv Pharmacol. 2009;57:137-85 [2]. Castner SA, et al. Reversal of ketamine-induced working memory impairments by the GABAAalpha2/3 agonist TPA023. Biol Psychiatry. 2010 May 15;67(10):998-1001.

Chemical Properties

Cas No. 252977-51-8 SDF
Canonical SMILES FC1=CC=CC=C1C2=NN=C3C=C(C(C)(C)C)C(OCC4=NC=NN4CC)=NN32
分子式 C20H22FN7O 分子量 395.43
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5289 mL 12.6445 mL 25.2889 mL
5 mM 0.5058 mL 2.5289 mL 5.0578 mL
10 mM 0.2529 mL 1.2644 mL 2.5289 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

TPA-023 attenuates subchronic phencyclidine-induced declarative and reversal learning deficits via GABAA receptor agonist mechanism: possible therapeutic target for cognitive deficit in schizophrenia

GABAergic drugs are of interest for the treatment of anxiety, depression, bipolar disorder, pain, cognitive impairment associated with schizophrenia (CIAS), and other neuropsychiatric disorders. Some evidence suggests that TPA-023, (7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b] pyridazine), a GABAA α2,3 subtype-selective GABAA partial agonist and α1/5 antagonist, and the neurosteroid, pregnenolone sulfate, a GABAA antagonist, may improve CIAS in pilot clinical trials. The goal of this study was to investigate the effect of TPA-023 in mice after acute or subchronic (sc) treatment with the N-methyl-D-aspartate receptor (NMDAR) antagonist, phencyclidine (PCP), on novel object recognition (NOR), reversal learning (RL), and locomotor activity (LMA) in rodents. Acute TPA-023 significantly reversed scPCP-induced NOR and RL deficits. Co-administration of sub-effective dose (SED) TPA-023 with SEDs of the atypical antipsychotic drug, lurasidone, significantly potentiated the effect of TPA-023 in reversing the scPCP-induced NOR deficit. Further, scTPA-023 co-administration significantly prevented scPCP-induced NOR deficit for 5 weeks. Also, administration of TPA-023 for 7 days following scPCP reversed the NOR deficit for 1 week. However, TPA-023 did not blunt acute PCP-induced hyperactivity, suggesting lack of efficacy as a treatment for psychosis. Systemic TPA-023 significantly blocked lurasidone-induced increases in cortical acetylcholine, dopamine, and glutamate without affecting increases in norepinephrine and with minimal effect on basal release of these neurotransmitters. TPA-023 significantly inhibited PCP-induced cortical and striatal dopamine, serotonin, norepinephrine, and glutamate efflux. These results suggest that TPA-023 and other GABAA agonists may be of benefit to treat CIAS.

The GABA system in anxiety and depression and its therapeutic potential

In the regulation of behavior, the role of GABA neurons has been extensively studied in the circuit of fear, where GABA interneurons play key parts in the acquisition, storage and extinction of fear. Therapeutically, modulators of α(2)/α(3) GABA(A) receptors, such as TPA023, have shown clinical proof of concept as novel anxiolytics, which are superior to classical benzodiazepines by their lack of sedation and much reduced or absent dependence liability. In view of the finding that anxiety disorders and major depression share a GABAergic deficit as a common pathophysiology, the GABA hypothesis of depression has found increasing support. It holds that α(2)/α(3) GABA(A) receptor modulators may serve as novel antidepressants. Initial clinical evidence for this view comes from the significantly enhanced antidepressant therapeutic response when eszopicole, an anxiolytic/hypnotic acting preferentially on α(2)/α(3) and α(1) GABA(A) receptors, was coadministered with an antidepressant. This effect persisted even when sleep items were not considered. These initial results warrant efforts to profile selective α(2)/α(3) GABA(A) receptor modulators, such as TPA023, as novel antidepressants. In addition, GABA(B) receptor antagonists may serve as potential antidepressants. This article is part of a Special Issue entitled 'Anxiety and Depression'.

GABAA receptor alpha2/alpha3 subtype-selective modulators as potential nonsedating anxiolytics

Nonselective benzodiazepines exert their pharmacological effects via GABAA receptors containing either an alpha1, alpha2, alpha3, or alpha5 subunit. The use of subtype-selective tool compounds along with transgenic mice has formed the conceptual framework for defining the requirements of subtype-selective compounds with potentially novel pharmacological profiles. More specifically, compounds which allosterically modulate the alpha2 and/or alpha3 subtypes but are devoid of, or have much reduced, effects at the alpha1 subtype are hypothesized to be anxioselective (i.e., anxiolytic but devoid of sedation). Accordingly, three compounds, MRK-409, TPA023 and TPA023B, which selectively potentiated the effects of GABA at the alpha2 and alpha3 compared to alpha1 subtypes were progressed into man. All three compounds behaved as nonsedating anxiolytics in preclinical (rodent and primate) species but, surprisingly, MRK-409 produced sedation in man at relatively low levels of occupancy (< 10%). This sedation liability of MRK-409 in man was attributed to its weak partial agonist efficacy at the alpha1 subtype since both TPA023 and TPA023B lacked any alpha1 efficacy and did not produce overt sedation even at relatively high levels of occupancy (> 50%). The anxiolytic efficacy of TPA023 was evaluated in Generalized Anxiety Disorder and although these clinical trials were terminated early due to preclinical toxicity issues, the combined data from these incomplete studies demonstrated an anxiolytic-like effect of TPA023. This compound also showed a trend to increase cognitive performance in a small group of schizophrenic subjects and is currently under further evaluation of its cognition-enhancing effects in schizophrenia as part of the TURNS initiative. In contrast, the fate of the back-up clinical candidate TPA023B has not been publicly disclosed. At the very least, these data indicate that the pharmacological profile of compounds that differentially modulate specific populations of GABAA receptors is distinct from classical benzodiazepines and should encourage further preclinical and clinical investigation of such compounds, with the caveat that, as exemplified by MRK-409, the preclinical profile might not necessarily translate into man.

α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders

GABA(A) receptors have important physiological functions, as revealed by pharmacological studies and experiments involving gene-targeted mouse models, and are the target of widely used drugs such as the benzodiazepines. In this review, we are summarizing current knowledge about the function of α2-containing GABA(A) receptors, a receptor subtype representing approximately 15-20% of all GABA(A) receptors. This receptor subtype mediates anxiolytic-like, reward-enhancing, and antihyperalgesic actions of diazepam, and has antidepressant-like properties. Secondary insufficiency of α2-containing GABA(A) receptors has been postulated to play a role in the pathogenesis of schizophrenia, and may be involved in cognitive impairment in other disorders. Moreover, polymorphisms in the GABRA2 gene encoding the GABA(A) receptor α2 subunit have been found to be linked to chronic alcohol dependence and to polydrug abuse. Thus, α2-containing GABA(A) receptors are involved in the regulation and/or modulation of emotional behaviors and of chronic pain, and appear to be a valid target for novel therapeutic approaches for the treatment of anxiety, depression, schizophrenia and chronic pain.

GABAA receptor subtype-selective modulators. I. α2/α3-selective agonists as non-sedating anxiolytics

The prototypic benzodiazepines, such as diazepam, are not only anxiolytic but also produce sedation. These effects are mediated by GABA(A) receptors containing either an α1, α2, α3 or α5 subunit at which the positive modulatory effects (i.e., agonist efficacy) of benzodiazepines are mediated via a specific benzodiazepine recognition site. Recent molecular genetic and pharmacological data point to α1-containing GABA(A) receptors as the "sedative" and α2- and/or α3-containing receptors as the "anxiolytic" subtype(s). Therefore, at Merck Sharp & Dohme attempts were made to identify subtype-selective compounds that modulate α2/α3 but not α1 receptor function with the prediction that such compounds would be non-sedating anxiolytics. The initial strategy for discovering such "anxioselective" compounds focussed on producing compounds with much higher affinity at the α2/α3 compared to α1 subtypes. The starting point for this approach was the triazolophthalazine series developed from a combination of a screening hit and a literature compound [1]. However, the maximum α3 versus α1 binding selectivity that could be achieved in this series was 12-fold and this was not considered sufficient for an appropriate in vivo pharmacological differentiation compared to non-selective compounds. Nevertheless, within this series compounds demonstrating (albeit to a limited extent) higher agonist efficacy at the α3 versus α1 subtype were also identified. This suggested that it might be possible to synthesize a compound with higher efficacy at the α2 and/or α3 compared to α1 subtypes, ideally with no efficacy at the latter subtype (i.e., a compound with subtype-selective efficacy). By changing the structure from a triazolophthalazine to a triazolopyridazine core, a number of either pharmacological tool compounds (L-838417, MRK-067 and MRK-696) or clinical development candidates (MRK-409 and TPA023) were identified. Encouraged by the success of this approach and the observation that the benzimidazole NS-2710 had a modest degree of α3 versus α1 selectivity efficacy, a structurally-related class of imidazopyridines was also explored. The introduction of an additional nitrogen into the imidazopyridine core gave the imidazopyrimidine series which initially had issues with poor dog pharmacokinetics. However, this was resolved and resulted in the identification of the development candidates MRK-623 and MRK-898. A fluoroimidazopyridine was found to be a bioisostere of the imidazopyrimidine core and in this series the α3-selective tool compound TP003 was identified. The addition of a further nitrogen into the imidazopyrimidine core produced the imidazotriazine series, which yielded the clinical candidate TPA023B. Imidazopyrazinone and imidazotriazinone compounds offered no advantages over their respective imidazopyrimidine and imidazotriazine analogues. Additional pharmacological tool compounds were identified within the pyridine, pyrazolotriazine, pyridazine and pyrazolopyridone series highlighting the general feasibility of GABA(A) receptor subtype selective efficacy as a strategy for developing compounds with novel in vitro and in vivo profiles.