Home>>Signaling Pathways>> Chromatin/Epigenetics>> HIF>>TP0463518

TP0463518 Sale

目录号 : GC31498

A pan HIF-PH inhibitor

TP0463518 Chemical Structure

Cas No.:1558021-37-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,277.00
现货
5mg
¥2,070.00
现货
10mg
¥2,880.00
现货
50mg
¥8,730.00
现货
100mg
¥13,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

TP-0463518 is a pan hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor.1 It inhibits human HIF-PH1 (Ki = 5.3 nM), as well as human HIF-PH2 and HIF-PH3 (IC50s = 18 and 63 nM, respectively). TP-0463518 (5 mg/kg) increases serum levels of erythropoietin (EPO) in mice. It also increases serum EPO levels in a 5/6 nephrectomy-induced rat model of chronic kidney disease when administered at a dose of 10 mg/kg.

1.Kato, S., Takayama, N., Takano, H., et al.TP0463518, a novel inhibitor for hypoxia-inducible factor prolyl hydroxylases, increases erythropoietin in rodents and monkeys with a good pharmacokinetics-pharmacodynamics correlationEur. J. Pharmacol.838138-144(2018)

Chemical Properties

Cas No. 1558021-37-6 SDF
Canonical SMILES ClC(C=C1)=CC=C1OC2=NC=C(CN3C(C(C(NCC(O)=O)=O)=C(O)CC3)=O)C=C2
分子式 C20H18ClN3O6 分子量 431.83
溶解度 DMSO : ≥ 125 mg/mL (289.47 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3157 mL 11.5786 mL 23.1573 mL
5 mM 0.4631 mL 2.3157 mL 4.6315 mL
10 mM 0.2316 mL 1.1579 mL 2.3157 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

TP0463518 (TS-143) Ameliorates Peptidoglycan-Polysaccharide Induced Anemia of Inflammation in Rats

TP0463518 (TS-143) is a competitive prolyl hydroxylase 1/2/3 pan-inhibitor, and has been shown to specifically stabilize hypoxia-inducible factor-2 alpha in the liver to increase erythropoietin production. While TP0463518 has been shown to improve renal anemia, its effect on anemia of inflammation is still unknown. In this study, we created a rat model of anemia of inflammation by administering peptidoglycan-polysaccharide (PG-PS) to Lewis rats; the PG-PS-treated rats developed anemia within 2 weeks after the PG-PS challenge. The hematopoietic effects of oral TP0463518 administration at 10 mg/kg once daily for 6 weeks were examined in this rat model. The hematocrit values in the TP0463518-treated group increased significantly from 32.8 ± 0.8 to 44.5 ± 2.1% after the treatment, which was comparable to that in the healthy control group. The change of the mean corpuscular volume following TP0463518 treatment was similar to that in the healthy control group up to week 4, and significantly higher than that in the vehicle-treated group. TP0463518 increased divalent metal transporter 1 and duodenal cytochrome b expressions in the intestine. Conversely, TP0465318 did not exert any effects on the expressions of genes involved in iron metabolism in the liver, even though TP0463518 dramatically increased erythropoietin expression. Furthermore, TP0463518 had no effect on the expressions of inflammation markers in the liver. These results suggest that TP0463518 increased iron absorption and improved anemia of inflammation without exacerbating liver inflammation. TP0463518 appears to have an acceptable safety profile and could become a useful new therapeutic option for anemia of inflammation.

TP0463518, a Novel Prolyl Hydroxylase Inhibitor, Specifically Induces Erythropoietin Production in the Liver

Prolyl hydroxylase (PHD) 1/2/3 pan inhibitors are known to potentially induce erythropoietin (EPO) production in both the kidney and liver. The 2-[[1-[[6-(4-chlorophenoxy)pyridin-3-yl]methyl]-4-hydroxy-6-oxo-2,3-dihydropyridine-5-carbonyl]amino]acetic acid (TP0463518) is a novel PHD 1/2/3 pan inhibitor; however, the main source of EPO production after TP0463518 administration remained to be investigated. We examined the effect of TP0463518 in inducing EPO production in the kidney and liver by measuring the hypoxia-inducible factor 2α (HIF-2α), EPO mRNA, and serum EPO levels in normal and bilaterally nephrectomized rats. Furthermore, we examined whether liver-derived EPO improved anemia in 5/6 nephrectomized (5/6 Nx) rats. TP0463518 scarcely increased the HIF-2α and EPO mRNA expression levels in the kidney cortex, whereas oral administration of TP0463518 at 40 mg/kg dramatically increased the HIF-2α level from 0.27 to 1.53 fmol/mg and the EPO mRNA expression level by 1300-fold in the livers of healthy rats. After administration of TP0463518 at 20 mg/kg, the total EPO mRNA expression level in the whole liver was 22-fold that in the whole kidney. In bilaterally nephrectomized rats, TP0463518 raised the serum EPO concentration from 0 to 180 pg/ml at 20 mg/kg. Furthermore, repeated administration of TP0463518 at 10 mg/kg increased the reticulocyte count in 5/6 Nx rats on day 7 and raised the hemoglobin level on day 14. The present study revealed that TP0463518 specifically induced EPO production in the liver and improved anemia. The characteristic feature of TP0463518 would lead to not only a more detailed understanding of the PHD-HIF2α-EPO pathway in erythropoiesis, but a new therapeutic alternative for renal anemia. SIGNIFICANCE STATEMENT: Prolyl hydroxylase (PHD) 1/2/3 pan inhibitors are known to potentially induce erythropoietin (EPO) production in both the kidney and liver; however, their effects on renal EPO production have been shown to vary depending on the experimental conditions. The authors found that 2-[[1-[[6-(4-chlorophenoxy)pyridin-3-yl]methyl]-4-hydroxy-6-oxo-2,3-dihydropyridine-5-carbonyl]amino]acetic acid (TP0463518), a PHD 1/2/3 pan inhibitor, specifically induced EPO production in the liver and that the liver-derived EPO was pharmacologically effective. Investigation of the effects of TP0463518 may pave the way for the development of a new therapeutic alternative for renal anemia patients.

TP0463518, a novel inhibitor for hypoxia-inducible factor prolyl hydroxylases, increases erythropoietin in rodents and monkeys with a good pharmacokinetics-pharmacodynamics correlation

Hypoxia-inducible factor prolyl hydroxylases (PHDs) inhibitor stabilizes hypoxia inducible factor alpha, which increases erythropoietin (EPO) expression via the hypoxia response element. Therefore, PHDs inhibitors have been developed as novel therapeutic agents for anemia. Here, we characterize the in vitro and in vivo pharmacological profiles of TP0463518, 2-[[1-[[6-(4-chlorophenoxy)pyridin-3-yl]methyl]-4-hydroxy-6-oxo-2,3-dihydropyridine-5-carbonyl]amino]acetic acid, a novel potent PHDs inhibitor. TP0463518 competitively inhibited human PHD2 with a Ki value of 5.3 nM. TP0463518 also inhibited human PHD1/3 with IC50 values of 18 and 63 nM as well as monkey PHD2 with an IC50 value of 22 nM. In normal mice and rats, TP0463518 significantly increased the serum EPO levels at doses of 5 and 20 mg/kg, respectively. The correlation factors for serum EPO and the serum TP0463518 levels were 0.95 in mice and 0.92 in rats. TP0463518 also increased the serum EPO level in 5/6 nephrectomized chronic kidney disease model rats at a dose of 10 mg/kg, with a correlation factor for serum EPO and the serum TP0463518 levels of 0.82. Finally, the effect of TP0463518 in monkeys was investigated. TP0463518 was promptly removed with a half-life of 5.2 h and increased the area under the curve (AUC) of EPO at a dose of 5 mg/kg. The EPO and TP0463518 levels were also correlated. These results suggest that TP0463518 induces endogenous EPO with a strong pharmacokinetic-pharmacodynamic correlation and may contribute to desirable hemoglobin control in patients with renal anemia.

Elucidation of clearance mechanism of TP0463518, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor: does a species difference in excretion routes exist between humans and animals?

1. TP0463518, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor, is reportedly excreted predominantly through urinary excretion in an unchanged form in humans, with partial biliary excretion also possible. However, the clearance mechanisms remain unclear. The aim of this study was to investigate the clearance mechanisms in humans and to assess species differences in the excretion routes.2. TP0463518 was not metabolised in rat, dog, or human hepatocytes. TP0463518 is a substrate for human BCRP, OATP1B1, OATP1B3, and OAT3, suggesting that renal uptake by OAT3 is probably the predominant clearance route, with hepatic uptake by OATP1B1 and OATP1B3 contributing partially to clearance in humans.3. A species difference in excretion routes was observed. The unchanged urinary excretion rates in humans, male rats, female rats, dogs, and monkeys were 80.7%, 0.1%, 40.9%, 15.2%, and 72.6%, respectively. Urinary excretion was predominant in humans and monkeys, while only biliary excretion was observed in male rats. Uptake studies using hepatocytes showed that the hepatic uptake clearance in rats was 13.6-fold higher than that in humans. Therefore, not only reabsorption via renal tubules, but also hepatic uptake seems to be involved in the species differences in excretion routes between rats and humans.

Novel Compound Induces Erythropoietin Secretion through Liver Effects in Chronic Kidney Disease Patients and Healthy Volunteers

Background: TP0463518 is a novel hypoxia-inducible factor prolyl hydroxylase inhibitor developed to aid in the treatment of anemia associated with chronic kidney disease (CKD) and is expected to increase erythropoietin (EPO) derived from liver. Two phase I studies were conducted in healthy volunteers (HV) and CKD patients undergoing hemodialysis (i.e., HD patients) or those not undergoing dialysis (i.e., ND patients).
Methods: Pharmacokinetics, pharmacodynamics, and safety profiles of TP0463518 were assessed. Forty HV received single oral doses of TP0463518 at 3, 6, 11, 20, and 36 mg or placebo. Twenty ND patients received single doses of TP0463518 at 1, 6, and 11 mg and 9 HD patients received TP0463518 at 1 and 11 mg doses. To identify the source organ of EPO, glycosylation patterns were determined using percentage migrated isoform (PMI) values.
Results: Declining renal function slowed elimination of TP0463518 and increased the mean AUC0-∞. ?Emax of serum EPO in 11-mg groups of HV, ND patients, and HD patients were 24.37 ± 11.37, 201.57 ± 130.34, and 1,324.76 ± 1,189.24 mIU/mL respectively. A strong correlation was -observed between logarithm conversions of ?Emax and AUC0-∞ with correlation coefficients of 0.945. PMI values of blood after TP0463518 administration were elevated to similar or higher levels in comparison with those of umbilical cord blood, which mainly contains liver-derived EPO.
Conclusions: TP0463518 induced dose-dependent EPO production, mainly derived from the liver in HV and CKD patients. These results suggest that TP0463518 is a new strategy for treating anemia in CKD, which can be used regardless of renal functions.