Home>>Signaling Pathways>> Cancer Biology>> Cancer Biology Peptides>>Epidermal Growth Factor Receptor Peptide (985-996)

Epidermal Growth Factor Receptor Peptide (985-996) Sale

(Synonyms: H2N-Asp-Val-Val-Asp-Ala-Asp-Glu-Tyr-Leu-Ile-Pro-Gln-OH ) 目录号 : GP10095

EGFR Peptide (985-996)

Epidermal Growth Factor Receptor Peptide (985-996) Chemical Structure

Cas No.:96249-43-3

规格 价格 库存 购买数量
1mg
¥305.00
现货
5mg
¥924.00
现货
10mg
¥1,418.00
现货
25mg
¥2,079.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

EGFR (epidermal growth factor receptor) exists on the cell surface and is activated by the binding of its specific ligands, including epidermal growth factor and transforming growth factor α. EGFR dimerization stimulates its intrinsic intracellular protein-tyrosine kinase activity. As a result, autophosphorylation of several tyrosine (Y) residues on the C-terminal domain of EGFR occurs. These include Y992, Y1045, Y1068, Y1148 and Y1173. This autophosphorylation elicits downstream activation and signaling by several other proteins that associate with the phosphorylated tyrosines through their own phosphotyrosine-binding SH2 domains. These downstream signaling proteins initiate several signal transduction cascades, principally the MAPK, Akt and JNK pathways, which lead to DNA synthesis and cell proliferation. Such proteins modulate phenotypes such as cell migration, adhesion, and proliferation. Activation of the receptor is important for the innate immune response in human skin.

Many therapeutic approaches are aimed at EGFR. The monoclonal antibodies block the extracellular ligand binding domain. With the binding site blocked, signal molecules can no longer attach and activate the tyrosine kinase. Another therapeutic method involves using small molecules to inhibit the EGFR tyrosine kinase on the cytoplasmic side of the receptor. Without kinase activity, EGFR is unable to activate itself, which is a prerequisite for the binding of downstream adaptor proteins. Ostensibly by halting the signaling cascade in cells that rely on this pathway for growth, tumor proliferation and migration is diminished

References:
1. Yan. L, Beckman RA (October 2005). "Pharmacogenetics and pharmacogenomics in oncology therapeutic antibody development". BioTechniques 39 (4): 565–8.
2. Yosef Yarden and Joseph Schlessinger (1987). "Epidermal Growth-Factor Induces Rapid, Reversible Aggregation of the Purified Epidermal Growth-Factor Receptor". Biochemistry 26 (5): 1443–1451.
3. Downward J, Parker P, Waterfield MD (1984). "Autophosphorylation sites on the epidermal growth factor receptor". Nature 311 (5985): 483–5.
4. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005). "A comprehensive pathway map of epidermal growth factor receptor signaling". Mol. Syst. Biol. 1 (1): 2005.0010.
5. David K. Moscatello2, Marina Holgado-Madruga2. "Frequent Expression of a Mutant Epidermal Growth Factor.  Receptor in Multiple Human Tumors".  Cancer Res December 1, 1995 55; 5536.

Chemical Properties

Cas No. 96249-43-3 SDF
别名 H2N-Asp-Val-Val-Asp-Ala-Asp-Glu-Tyr-Leu-Ile-Pro-Gln-OH
化学名 5-amino-1-cyclopropyl-6,8-difluoro-7-(4-methylpiperazin-1-yl)-4-oxoquinoline-3-carboxylic acid
Canonical SMILES CN1CCN(CC1)C2=C(C3=C(C(=C2F)N)C(=O)C(=CN3C4CC4)C(=O)O)F
分子式 C61H93N13O23 分子量 1376.46
溶解度 ≥ 137.6mg/mL in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.7265 mL 3.6325 mL 7.265 mL
5 mM 0.1453 mL 0.7265 mL 1.453 mL
10 mM 0.0727 mL 0.3633 mL 0.7265 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The juxtamembrane, cytosolic region of the epidermal growth factor receptor is involved in association with alpha-subunit of Gs

Previously, we have demonstrated that epidermal growth factor (EGF) can stimulate adenylyl cyclase activity via activation of Gs in the heart. Moreover, we have recently shown that Gsalpha is phosphorylated by the EGF receptor protein tyrosine kinase and that the juxtamembrane region of the EGF receptor can stimulate Gs directly. Therefore, employing isolated cardiac membranes, the two-hybrid assay, and in vitro association studies with purified EGF receptor and Gsalpha we have investigated Gsalpha complex formation with the EGF receptor and elucidated the region in the receptor involved in this interaction. In isolated cardiac membranes, immunoprecipitation of EGF receptor was accompanied by co-immunoprecipitation of Gsalpha. In the yeast two-hybrid assay, the cytosolic domain of the EGF receptor and the N-terminal 64 amino acids of this region (Met644-Trp707) associated with Gsalpha. However, interactions of these regions of the EGF receptor with constitutively active Gsalpha were diminished in the two-hybrid assay. Employing purified proteins, our studies demonstrate that the EGF receptor, directly and stoichiometrically, associates with Gsalpha (1 mol of Gsalpha/mol of EGF receptor). This association was not altered in the presence or absence of ATP and therefore, was independent of tyrosine phosphorylation of either of the proteins. Peptides corresponding to the juxtamembrane region of the receptor decreased association of the EGF receptor with Gsalpha. However, neither the C-terminally truncated EGF receptor (Delta1022-1186) nor a peptide corresponding to residues 985-996 of the receptor altered association with Gsalpha, thus indicating the selectivity of the G protein interaction with the juxtamembrane region. Interestingly, peptides corresponding to N and C termini of Gsalpha did not alter the association of Gsalpha with the EGF receptor. Consistent with the findings from the two-hybrid assay where constitutively active Gsalpha poorly associated with the EGF receptor, in vitro experiments with purified proteins also demonstrated that activation of Gsalpha by guanosine 5'-3-O-(thio)triphosphate decreased the association of G protein with the EGF receptor. Thus we conclude that the juxtamembrane region of the EGF receptor, directly and stoichiometrically, associates with Gsalpha and that upon activation of Gsalpha this association is decreased.

Modified multipotent stromal cells with epidermal growth factor restore vasculogenesis and blood flow in ischemic hind-limb of type II diabetic mice

Diabetes is increasing in the world and causes severe cardiovascular complications. Diabetes-induced limb ischemia leads to foot amputation and therapeutic remedies are urgently needed. Here we report that local injection of mesenchymal stem cells (MSCs) prestimulated with epidermal growth factor (EGF) restored blood flow and vasculogenesis in the ischemic hind-limb of type II diabetic (db(-)/db(-)) mice. Bone marrow cells from db(-)/db(-) mice are altered as evidenced by increased oxidative stress and reduced Akt and adhesion molecules when compared with control (db(-)/db(+)). Femoral artery ligation-induced ischemia was performed in the hind-limb of db(-)/db(-) and db(-)/db(+) mice for 28 days. Enhanced green fluorescent protein (EGFP)-MSCs stimulated+/-exogenous EGF for 24 h were injected locally into the ischemic muscle. Blood flow measured with MoorLDI-Laser and microangiography assessed with X-ray showed 100% recovery in db(-)/db(+) compared to 50% recovery in db(-)/db(-) mice. Interestingly, db(-)/db(-) mice had 60 and 96% blood flow recovery and 61 and 98% of vasculogenesis when treated with MSCs alone or MSCs modified with EGF, respectively. Western blot analysis of hind-limb muscles revealed an increase in Akt and vascular endothelial growth factor receptor phosphorylation and hypoxia-inducible factor) expression in db(-)/db(-) mice injected with MSCs or MSCs+EGF compared to db(-)/db(-) mice. Fluorescent microscopic images show that EGFP-MSCs differentiate into new microvessels. Adhesion and migration of MSCs on cultured endothelial cells were ICAM1-, VCAM1- and Akt-dependent mechanism and elevated when MSCs were prestimulated with EGF compared with nonstimulated MSCs. Our novel study data provide evidence that in type II diabetes, stimulated MSCs with EGF enhance the recovery of blood flow and angiogenesis.