Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Autophagy>>AZD7624

AZD7624 Sale

目录号 : GC31924

AZD7624是一种可吸入的p38抑制剂,具有高效的抗炎活性。

AZD7624 Chemical Structure

Cas No.:1095004-78-6

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

AZD7624 is an inhaled p38 inhibitor, with potent anti-inflammatory activity.

AZD7624 is an inhaled p38 inhibitor, with potent anti-inflammatory activity. AZD7624 inhibits LPS-induced TNFα in human mononuclear cells, in whole blood as well as in alveolar macrophages in vitro, with pIC50u of 8.4, 8.7, and 9.0[1].

[1]. Pehrson R, et al. AZD7624, an Inhaled p38 Inhibitor, Demonstrates Local Lung Inhibition of LPS-Induced TNFα with Minimal Systemic Exposure. J Pharmacol Exp Ther. 2018 Jun;365(3):567-572.

Chemical Properties

Cas No. 1095004-78-6 SDF
Canonical SMILES O=C(NC1CC1)C2=CC(N3C(C(NC4(C5=CC=CC=C5OCCNC)CC4)=NC=C3)=O)=C(C)C(F)=C2
分子式 C27H30FN5O3 分子量 491.56
溶解度 DMSO: 250 mg/mL (508.58 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0343 mL 10.1717 mL 20.3434 mL
5 mM 0.4069 mL 2.0343 mL 4.0687 mL
10 mM 0.2034 mL 1.0172 mL 2.0343 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

AZD7624, an Inhaled p38 Inhibitor, Demonstrates Local Lung Inhibition of LPS-Induced TNF 汐 with Minimal Systemic Exposure

Inhaled drugs generally aim to drive a local pharmacological effect in lung, at the same time minimizing systemic exposure, in order to obtain efficacy in lung disease without unwanted systemic effects. Here, we demonstrate that inhaled delivery of a p38 inhibitor (AZD7624) can provide superior pharmacokinetic exposure and superior pharmacodynamic lung effects. In rats, inhaled AZD7624 had a five times higher dose-adjusted lung exposure compared with intravenous dosing. In healthy volunteers, lipopolysaccharide (LPS)-induced tumor necrosis factor 汐 (TNF汐) in sputum has been shown to be significantly reduced (85%) by means of inhaled AZD7624. Here, we demonstrate that this effect is associated with a mean unbound plasma concentration, gained from in vitro and ex vivo LPS-challenge protocols, significantly below potencies obtained for AZD7624, suggesting that lung exposure is probably much higher than systemic exposure. This assessment was made for the unbound potency (pIC50u), e.g., the potency remaining after adjustment for plasma protein binding and blood plasma ratio. Hence, the unbound potency of AZD7624 to inhibit LPS-induced TNF汐 in human mononuclear cells, in whole blood as well as in alveolar macrophages in vitro, was 8.4, 8.7 (full inhibition), and 9.0 (partial inhibition), respectively. The pIC50u in whole blood ex vivo was 8.8, showing good in vitro/in vivo potency correlations. Thus, a mean unbound AZD7624 plasma concentration of 0.3 nmol/l, which was associated with a decrease in LPS-induced sputum TNF汐 by 85%, is much lower than the pIC50u. This demonstrates that AZD7624 can achieve significant local lung pharmacodynamic effects with concomitant sub-pharmacological systemic exposure.

The development of AZD7624 for prevention of exacerbations in COPD: a randomized controlled trial

Background: p38 mitogen-activated protein kinase (MAPK) plays a central role in the regulation and activation of pro-inflammatory mediators. COPD patients have increased levels of activated p38 MAPK, which correlate with increased lung function impairment, alveolar wall inflammation, and COPD exacerbations.
Objectives: These studies aimed to assess the effect of p38 inhibition with AZD7624 in healthy volunteers and patients with COPD. The principal hypothesis was that decreasing lung inflammation via inhibition of p38汐 would reduce exacerbations and improve quality of life for COPD patients at high risk for acute exacerbations.
Methods: The p38 isoform most relevant to lung inflammation was assessed using an in situ proximity ligation assay in severe COPD patients and donor controls. Volunteers aged 18-55 years were randomized into the lipopolysaccharide (LPS) challenge study, which investigated the effect of a single dose of AZD7624 vs placebo on inflammatory biomarkers. The Proof of Principle study randomized patients aged 40-85 years with a diagnosis of COPD for >1 year to AZD7624 or placebo to assess the effect of p38 inhibition in decreasing the rate of exacerbations.
Results: The p38 isoform most relevant to lung inflammation was p38汐, and AZD7624 specifically inhibited p38汐 and p38汕 isoforms in human alveolar macrophages. Thirty volunteers were randomized in the LPS challenge study. AZD7624 reduced the increase from baseline in sputum neutrophils and TNF-汐 by 56.6% and 85.4%, respectively (p<0.001). In the 213 patients randomized into the Proof of Principle study, there was no statistically significant difference between AZD7624 and placebo when comparing the number of days to the first moderate or severe exacerbation or early dropout.
Conclusion: Although p38汐 is upregulated in the lungs of COPD patients, AZD7624, an isoform-specific inhaled p38 MAPK inhibitor, failed to show any benefit in patients with COPD.

Differential anti-inflammatory effects of budesonide and a p38 MAPK inhibitor AZD7624 on COPD pulmonary cells

Background: The effects of anti-inflammatory drugs in COPD patients may vary between different cell types. The aim of the current study was to assess the anti-inflammatory effects of the corticosteroid budesonide and a p38 MAPK inhibitor (AZD7624) on different cell types obtained from COPD patients and healthy controls.
Methods: Eight healthy smokers, 16 COPD infrequent exacerbators, and 16 frequent COPD exacerbators (≡2 exacerbations in the last year) were recruited for bronchoscopy and blood sampling. The anti-inflammatory effects of budesonide and AZD7624 were assessed on cytokine release from lipopolysaccharide-stimulated alveolar macrophages and peripheral blood mononuclear cells and polyinosinic:polycytidylic acid-stimulated bronchial epithelial cells.
Results: The anti-inflammatory effects of budesonide varied greatly within a patient according to the cell type studied. Bronchial epithelial cells showed the lowest sensitivity to budesonide, while peripheral blood mononuclear cells showed the greatest sensitivity. AZD7624 had a greater effect than budesonide on cytokine production from bronchial epithelial cells. Exacerbation frequency did not influence corticosteroid sensitivity.
Conclusion: We observed variable corticosteroid and p38 MAPK inhibitor anti-inflammatory responses within the same individual depending on the cell type studied. These findings support the use of multiple anti-inflammatory strategies in COPD patients due to differences between cell types.

The COPD Pipeline XXXII

Does Z' equal 1 or 2? Enhanced powder NMR crystallography verification of a disordered room temperature crystal structure of a p38 inhibitor for chronic obstructive pulmonary disease

The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR (1H, 13C, 15N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13C shift tensors and the observation of residual dipolar coupling between 13C and 14N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at room temperature, although dynamic disorder is present on the NMR timescale. Of the CSP-generated structures, 2 are found to be fully consistent with the SSNMR and pXRD data; within this pair, they are found to be structurally very similar (RMSD16 = 0.30 ?). We establish that the CSP structure in best agreement with the NMR data possesses the highest degree of structural similarity with the scXRD-determined structure (RMSD16 = 0.17 ?), and has the lowest DFT-calculated energy amongst all CSP-generated structures with Z' = 2.