Home>>Signaling Pathways>> Others>> BCRP>>YHO-13351

YHO-13351 Sale

目录号 : GC32114

YHO-13351是YHO-13177的水溶性前体药物,YHO-13177是腺癌耐药蛋白多药转运通道(BCRP)高效特异性抑制剂。

YHO-13351 Chemical Structure

Cas No.:1346753-00-1

规格 价格 库存 购买数量
5mg
¥910.00
现货
10mg
¥1,339.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

YHO-13351 is the water-soluble prodrug of YHO-13177, which is a potent and specific inhibitor of BCRP.IC50 value:Target: BCRP inhibitorin vitro: YHO-13177 potentiated the cytotoxicity of SN-38, mitoxantrone, and topotecan in both BCRP-transduced human colon cancer HCT116 (HCT116/BCRP) cells and SN-38-resistant human lung cancer A549 (A549/SN4) cells that express BCRP, but had little effect in the parental cells. In addition, YHO-13177 potentiated the cytotoxicity of SN-38 in human lung cancer NCI-H460 and NCI-H23, myeloma RPMI-8226, and pancreatic cancer AsPC-1 cells that intrinsically expressed BCRP. In contrast, it had no effect on P-glycoprotein-mediated paclitaxel resistance in MDR1-transduced human leukemia K562 cells and multidrug resistance-related protein 1-mediated doxorubicin resistance in MRP1-transfected human epidermoid cancer KB-3-1 cells. YHO-13177 increased the intracellular accumulation of Hoechst 33342, a substrate of BCRP, at 30 minutes and partially suppressed the expression of BCRP protein at more than 24 hours after its treatment in both HCT116/BCRP and A549/SN4 cells [1].in vivo: In mice, YHO-13351 was rapidly converted into YHO-13177 after its oral or intravenous administration. Coadministration of irinotecan with YHO-13351 significantly increased the survival time of mice inoculated with BCRP-transduced murine leukemia P388 cells and suppressed the tumor growth in an HCT116/BCRP xenograft model, whereas irinotecan alone had little effect in these tumor models [1].

[1]. Yamazaki R, et al. Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo. Mol Cancer Ther. 2011 Jul;10(7):1252-63.

Chemical Properties

Cas No. 1346753-00-1 SDF
Canonical SMILES N#C/C(C1=CC=C(OC)C(OC)=C1)=C\C2=CC=C(N3CCC(OC(CN(CC)CC)=O)CC3)S2.O=S(C)(O)=O
分子式 C27H37N3O7S2 分子量 579.73
溶解度 DMSO : ≥ 38 mg/mL (65.55 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7249 mL 8.6247 mL 17.2494 mL
5 mM 0.345 mL 1.7249 mL 3.4499 mL
10 mM 0.1725 mL 0.8625 mL 1.7249 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Novel acrylonitrile derivatives, YHO-13177 and YHO-13351, reverse BCRP/ABCG2-mediated drug resistance in vitro and in vivo

Mol Cancer Ther 2011 Jul;10(7):1252-63.PMID:21566063DOI:10.1158/1535-7163.MCT-10-0874.

Breast cancer resistance protein (BCRP/ABCG2) confers resistance to anticancer drugs such as 7-ethyl-10-hydroxycamptothecin (SN-38, an active metabolite of irinotecan), mitoxantrone, and topotecan. In this study, we examined the reversing effects of YHO-13177, a novel acrylonitrile derivative, and its water-soluble diethylaminoacetate prodrug YHO-13351 on the BCRP-mediated drug resistance. YHO-13177 potentiated the cytotoxicity of SN-38, mitoxantrone, and topotecan in both BCRP-transduced human colon cancer HCT116 (HCT116/BCRP) cells and SN-38-resistant human lung cancer A549 (A549/SN4) cells that express BCRP, but had little effect in the parental cells. In addition, YHO-13177 potentiated the cytotoxicity of SN-38 in human lung cancer NCI-H460 and NCI-H23, myeloma RPMI-8226, and pancreatic cancer AsPC-1 cells that intrinsically expressed BCRP. In contrast, it had no effect on P-glycoprotein-mediated paclitaxel resistance in MDR1-transduced human leukemia K562 cells and multidrug resistance-related protein 1-mediated doxorubicin resistance in MRP1-transfected human epidermoid cancer KB-3-1 cells. YHO-13177 increased the intracellular accumulation of Hoechst 33342, a substrate of BCRP, at 30 minutes and partially suppressed the expression of BCRP protein at more than 24 hours after its treatment in both HCT116/BCRP and A549/SN4 cells. In mice, YHO-13351 was rapidly converted into YHO-13177 after its oral or intravenous administration. Coadministration of irinotecan with YHO-13351 significantly increased the survival time of mice inoculated with BCRP-transduced murine leukemia P388 cells and suppressed the tumor growth in an HCT116/BCRP xenograft model, whereas irinotecan alone had little effect in these tumor models. These findings suggest that YHO-13351, a prodrug of YHO-13177, could be clinically useful for reversing BCRP-mediated drug resistance in cancer chemotherapy.

ABCG2 inhibitor YHO-13351 sensitizes cancer stem/initiating-like side population cells to irinotecan

Anticancer Res 2013 Apr;33(4):1379-86.PMID:23564776doi

Background/aim: The aim of this study was to determine the efficacy of the combination of irinotecan and newly-synthesized ABCG2 (breast cancer-resistant protein) inhibitor YHO-13351 in cancer chemotherapy. Materials and methods: Side population (SP) and non-SP cells from the human cervical carcinoma cell line HeLa were isolated by fluorescence-activated cell sorting. The antitumor activity of combination therapy with irinotecan and YHO-13351 was evaluated in xenograft studies in athymic BALB/c nude mice. Results: While SP cells exhibited cancer stem/initiating cell-like properties and low sensitivity to irinotecan-alone, YHO-13351 sensitized them to irinotecan in both in vitro and in vivo studies. YHO-13351 in conjunction with irinotecan reduced the increase of the SP cell ratio in the tumors compared to those observed with treatment with irinotecan-alone. Conclusion: Combination therapy with irinotecan and YHO-13351 would not only accelerate the antitumor effect of this regimen, but also play a crucial role in preventing resistance or relapse.

ABCG2 Overexpression Contributes to Pevonedistat Resistance

Cancers (Basel) 2020 Feb 12;12(2):429.PMID:32059437DOI:10.3390/cancers12020429.

MLN4924 (pevonedistat) is a first-in-class NEDD8-activating enzyme (NAE) inhibitor in clinical trials for the treatment of solid tumors and hematologic malignancies. Despite the promising activity of MLN4924 observed in early trials, drug resistance has been noted in some patients. Identifying the underlying cause of treatment failure may help to better stratify patients that are most likely to benefit from this novel agent. Early preclinical studies revealed that the development of NAE mutations promotes resistance to MLN4924. However, these mutations have not been detected in patients that are relapsed/refractory to MLN4924, suggesting that other mechanisms are driving clinical resistance. To better understand the potential mechanisms of MLN4924 resistance, we generated MLN4924-resistant ovarian cancer cells. Interestingly, these cells did not develop mutations in NAE. Transcriptome analyses revealed that one of the most upregulated genes in resistant cells was ABCG2. This result was validated by quantitative real-time PCR and immunoblotting. Importantly, the sensitivity of MLN4924-resistant cells was restored by lentiviral short hairpin RNA (shRNA) targeting ABCG2. Further investigation using ABCG2-overexpressing NCI-H460/MX20 cells determined that these cells are resistant to the anticancer effects of MLN4924 and can be sensitized by co-treatment with the ABCG2 inhibitors YHO-13351 and fumitremorgin C. Finally, HEK293 models with overexpression of wild-type ABCG2 (R482) and variants (R482G and R482T) all demonstrated significant resistance to MLN4924 compared to wild-type cells. Overall, these findings define an important molecular resistance mechanism to MLN4924 and demonstrate that ABCG2 may be a useful clinical biomarker that predicts resistance to MLN4924 treatment.

Combining ABCG2 Inhibitors with IMMU-132, an Anti-Trop-2 Antibody Conjugate of SN-38, Overcomes Resistance to SN-38 in Breast and Gastric Cancers

Mol Cancer Ther 2016 Aug;15(8):1910-9.PMID:27207776DOI:10.1158/1535-7163.MCT-16-0219.

Sacituzumab govitecan (IMMU-132), an SN-38-conjugated antibody-drug conjugate, is showing promising therapeutic results in a phase I/II trial of patients with advanced Trop-2-expressing, metastatic, solid cancers. As members of the ATP-binding cassette (ABC) transporters confer chemotherapy resistance by active drug efflux, which is a frequent cause of treatment failure, we explored the use of known inhibitors of ABC transporters for improving the therapeutic efficacy of IMMU-132 by overcoming SN-38 resistance. Two human tumor cell lines made resistant to SN-38, MDA-MB-231-S120 (human breast cancer) and NCI-N87-S120 (human gastric cancer), were established by continuous exposure of the parental cells to stepwise increased concentrations of SN-38 and analyzed by flow cytometry for functional activities of ABCG2 and ABCB1, immunoblotting and qRT-PCR for the expression of ABCG2 at both protein and mRNA levels, and MTS assays for the potency of SN-38 alone or in combination with a modulator of ABC transporters. MDA-MB-231-S120 and NCI-N87-S120 displayed reduced sensitivity to SN-38 in vitro, with IC50 values approximately 50-fold higher than parental MDA-MB-231 and NCI-N87 cells. The increase in drug resistance of both S120 cell populations is associated with the expression of functional ABCG2, but not ABCB1. Importantly, treatment of both S120 sublines with known ABCG2 inhibitors (fumitremorgin C, Ko143, and YHO-13351) restored toxicity of SN-38, and the combination of YHO-13351 with IMMU-132 increased the median survival of mice bearing NCI-N87-S120 xenografts. These results provide a rationale for combination therapy of IMMU-132 and inhibitors of ABC transporters, such as YHO-13351. Mol Cancer Ther; 15(8); 1910-9. ©2016 AACR.