Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> P-glycoprotein>>Voacamine

Voacamine Sale

(Synonyms: 老刺木胺) 目录号 : GC45150

An alkaloid with diverse biological activities

Voacamine Chemical Structure

Cas No.:3371-85-5

规格 价格 库存 购买数量
500μg
¥496.00
现货
1mg
¥942.00
现货
5mg
¥2,244.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Voacamine is an alkaloid originally isolated from Voacanga that has diverse biological activities. It is a cannabinoid receptor 1 (CB1) antagonist (IC50 = 41 nM). Voacamine (1-10 µg/ml) time- and dose-dependently decreases survival of U2OS and multi-drug resistant U2OS (U2OS/DX) osteosarcoma cells and induces autophagy but not apoptosis. It also has antimalarial activity, inhibiting growth of P. falciparum in vitro at the trophozoite and schizont stages and reducing parasitemia in mice infected with P. yoelii when administered at doses of 2.5, 5, and 10 mg/kg.

Chemical Properties

Cas No. 3371-85-5 SDF
别名 老刺木胺
Canonical SMILES C/C=C1CN(C)[C@@]2([H])CC3=C(NC4=C3C=CC=C4)[C@](C5=CC(NC6=C7CC[N@@](C8)[C@]9([H])[C@@]6(C(OC)=O)C[C@@]8([H])C[C@@H]9CC)=C7C=C5OC)([H])C[C@]\1([H])[C@]2([H])C(OC)=O
分子式 C43H52N4O5 分子量 704.9
溶解度 DMF: 30 mg/ml,DMSO: 20 mg/ml,Ethanol: 5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4186 mL 7.0932 mL 14.1864 mL
5 mM 0.2837 mL 1.4186 mL 2.8373 mL
10 mM 0.1419 mL 0.7093 mL 1.4186 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A natural product, Voacamine, sensitizes paclitaxel-resistant human ovarian cancer cells

Toxicol Appl Pharmacol 2022 Jan 1;434:115816.PMID:34856211DOI:10.1016/j.taap.2021.115816.

Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, Voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.

Voacamine is a novel inhibitor of EGFR exerting oncogenic activity against colorectal cancer through the mitochondrial pathway

Pharmacol Res 2022 Oct;184:106415.PMID:36029932DOI:10.1016/j.phrs.2022.106415.

Colorectal cancer (CRC), among the most aggressive and prevailing neoplasms, is primarily treated with chemotherapy. Voacamine (VOA), a novel bisindole natural product, possesses a variety of conspicuous pharmacological activities. Within the current research, we evaluated in vitro and in vivo the anticancer efficacy of VOA against CRC and its potential mechanisms. Our results illustrated that VOA concentrationdependently suppressed the proliferation and migration of CT26 and HCT116 cells as correspondingly indicated by IC50 values of 1.38 ± 0.09 μM and 4.10 ± 0.14 μM. Furthermore, treatment of VOA also suppressed tumor cell colony formation, escalated the late-stage apoptosis rate of tumor cells, and evoked cell cycle of CT26 and HCT116 cells arrest inhibition in G2-M and G0-G1 phases, respectively. Meanwhile, VOA markedly disrupted the mitochondrial membrane potential eliciting mitochondrial dysfunction, decreased ATP production, and intermediated an enhanced accumulation of intracellular reactive oxygen species with a concentration-dependent pattern, accompanied by elevated expression levels of pro-apoptotic related protein Bax, Cyt-C, cleaved caspases 3/8/9 and by diminished Bcl-2, Bid, PRAP and caspases 3/8/9 expression. Further mechanistic studies revealed VOA treatment suppressed the EGFR/PI3K/Akt pathway with the evidence of the decreased phosphorylation proteins of EGFR, PI3K, Akt, and downstream proteins of p-mTOR, p-NF-kB, and p-P70S6. Additionally, molecular dynamics simulations further displayed VOA could enter the EGFR pocket followed by multiple mutual interaction effects. Interestingly, the EGFR activator (NSC228155) could slack the inhibitory capability of VOA on the EGFR/PI3K/Akt pathway as well as VOA-induced impairment of mitochondrial function. Finally, administration of VOA (15, 30 mg/kg every 2 days, i.p., for 16 days) in CT26 syngeneic mice dose-dependently suppressed the neoplastic development without appreciable organ toxicities. Taken together, our study demonstrated that VOA may be a prospective therapeutic agent for the treatment of CRC.

Effect of Voacamine upon inhibition of hypoxia induced fatty acid synthesis in a rat model of methyln-nitrosourea induced mammary gland carcinoma

BMC Mol Cell Biol 2021 Jun 5;22(1):33.PMID:34090331DOI:10.1186/s12860-021-00371-9.

Background: In the present study, fatty acid synthesis is targeted to combat mammary gland carcinoma by activating prolyl hydroxylase-2 with Voacamine alone and in combination with Tamoxifen. It was hypothesized that the activation of prolyl hydroxylase-2 would inhibit the hypoxia-induced fatty acid synthesis and mammary gland carcinoma. Mammary gland carcinoma was induced with a single dose administration of N-methyl-N-nitrosourea (50 mg/kg,i.p.) and treatment with Voacamine and Tamoxifen 15 days after carcinogen administration. Results: At the end of the study, hemodynamic profiling of animals was recorded to assess the cardiotoxic potential of the drug. Blood serum was separated and subjected to nuclear magnetic resonance spectroscopy. Carmine staining and histopathology of mammary gland tissue were performed to evaluate the anti-angiogenic potential of the drug. The antioxidant potential of the drug was measured with antioxidant markers. Western blotting was performed to study the effect of the drug at the molecular level. Conclusion: Results of the study have shown that Voacamine treatment stopped further decrease in body weight of experimental animals. The hemodynamic study evidenced that Voacamine at a low dose is safe in cardiac patients. Microscopic evaluation of mammary gland tissue documented the anti-angiogenic potential of Voacamine and Tamoxifen therapy. Perturbed serum metabolites were also restored to normal along with antioxidant markers. Immunoblotting of mammary gland tissue also depicted restoration of proteins of the hypoxic and fatty acid pathway. Conclusively, Voacamine and its combination with Tamoxifen activated prolyl hydroxylase-2 to combat mammary gland carcinoma.

Voacamine: Alkaloid with its essential dimeric units to reverse tumor multidrug resistance

Toxicol In Vitro 2020 Jun;65:104819.PMID:32135239DOI:10.1016/j.tiv.2020.104819.

Search for natural substances in association with conventional chemotherapeutic drugs with a chemiosensitizing action easily accessible to the tumor mass has encouraged our studies on Voacamine (VOA) and its monomeric units, voacangine and vobasine. Our previous results showed that VOA sensitized multidrug resistant (MDR) osteosarcoma cells (U-2 OS/DX) to doxorubicin (DOX) cytotoxicity. VOA, extracted by Peschiera fuchsiaefolia plant, is a bisindole alkaloid consisting of an Iboga skeleton (voacangine) directly linked to a 2-acyl indole unit (vobasine). High-performance thin-layer chromatography densitometry demonstrated the purity of VOA, voacangine and vobasine samples. Flow cytometry analysis showed that VOA, voacangine and vobasine enhanced DOX accumulation of U-2 OS/DX cells, in equally way, whereas VOA reduced more efficiently DOX efflux. Optical microscopy and clonogenic assay confirmed that VOA was more effective than voacangine and vobasine in enhancing DOX cytotoxic effect. These results showed that monomers linked together are necessary to modulate resistant phenotype of osteosarcoma cells. To complete the study, we evaluated the effect of three compounds on microtubules by confocal microscopy, suggesting that only the whole molecule depolymerizes the microtubules blocking so DOX efflux-mediated by vesicles.

Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB

Biochem Pharmacol 2017 Aug 15;138:19-30.PMID:28483460DOI:10.1016/j.bcp.2017.05.002.

Indole alkaloids possess a large spectrum of biological activities including anti-protozoal action. Here we report for the first time that Voacamine, isolated from the plant Tabernaemontana coronaria, is an antiprotozoal agent effective against a large array of trypanosomatid parasites including Indian strain of Leishmania donovani and Brazilian strains of Leishmania amazonensis and Trypanosoma cruzi. It inhibits the relaxation activity of topoisomerase IB of L. donovani (LdTop1B) and stabilizes the cleavable complex. Voacamine is probably the first LdTop1B-specific poison to act uncompetitively. It has no impact on human topoisomerase I and II up to 200μM concentrations. The study also provides a thorough insight into ultrastructural alterations induced in three kinetoplastid parasites by a specific inhibitor of LdTop1B. Voacamine is also effective against intracellular amastigotes of different drug unresponsive field isolates of Leishmania donovani obtained from endemic zones of India severely affected with visceral leishmaniasis. Most importantly, this is the first report demonstrating the efficacy of a compound to reduce the burden of drug resistant parasites, unresponsive to SAG, amphotericin B and miltefosine, in experimental BALB/c mice model of visceral leishmaniasis. The findings cumulatively provide a strong evidence that Voacamine can be a promising drug candidate against trypanosomatid infections.