Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Calcium Channel>>Rhod-2 (potassium salt)

Rhod-2 (potassium salt) Sale

目录号 : GC44827

A red fluorescent calcium indicator

Rhod-2 (potassium salt) Chemical Structure

Cas No.:663625-18-1

规格 价格 库存 购买数量
1mg
¥3,854.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Rhod-2 (potassium salt) is a water-soluble, red fluorescent calcium indicator. It exhibits a significant shift in fluorescence intensity upon calcium binding (ex max = 549 nm; calcium-free v. ex/em max = 552/581 nm; calcium-bound). Unlike the UV-excitable indicators fura-2 and indo-1 , there is no accompanying spectral shift.

Chemical Properties

Cas No. 663625-18-1 SDF
Canonical SMILES CN(C)C(C=C1)=CC2=C1C(C3=CC=C(N(CC([O-])=O)CC([O-])=O)C(OCCOC4=C(N(CC([O-])=O)CC([O-])=O)C=CC(C)=C4)=C3)=C(C=C/5)C(O2)=CC5=[N+](C)\C.[K+].[K+].[K+]
分子式 C40H39N4O11•3K 分子量 869.1
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.1506 mL 5.7531 mL 11.5062 mL
5 mM 0.2301 mL 1.1506 mL 2.3012 mL
10 mM 0.1151 mL 0.5753 mL 1.1506 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells

Cell Calcium 2006 Jan;39(1):35-46.PMID:16257445DOI:10.1016/j.ceca.2005.09.001

To study the role of mitochondrial Ca(2+) clearance in stimulated cells, changes in free Ca(2+) concentration in the cytosol, [Ca(2+)](c) and that in mitochondria, [Ca(2+)](m) along with secretory responses were observed using chromaffin cells co-loaded with Fura-2 and Rhod-2 in the perfused rat adrenal medulla. When the cells were stimulated with 40 mM K(+) in the perfusate, the duration of [Ca(2+)](m) response markedly increased with prolongation of the stimulation period, exhibiting a mean half-decay time of 21 min with 30s stimulation, whereas its amplitude was not altered with stimulations of 10-30s. A computer simulation analysis showed that such a mode of [Ca(2+)](m) response can be produced if excess Ca(2+) taken up by mitochondria precipitates as calcium phosphate (Pi) salt. In the presence of 5 microM rotenone plus 10 microM oligomycin, a decrease in the duration of [Ca(2+)](m) response and a slight but significant increase (24%) in the secretory response to 30s stimulation with 40 mM K(+) were observed. Simulation analyses suggested that this effect of rotenone may be due to reduction in mitochondrial Ca(2+) uptake induced by rotenone-elicited partial depolarization of the mitochondrial membrane potential. In chromaffin cells transsynaptically stimulated through the splanchnic nerve, the intensity of NAD(P)H autofluorescence changed with time courses similar to those of [Ca(2+)](m) responses. The temporal profiles of those two responses were prolonged in a similar manner by application of an inhibitor of mitochondrial Na(+)/Ca(2+) exchanger, CGP37157. Thus, due to the unique Ca(2+) buffering mechanism, [Ca(2+)](m) responses associated with massive mitochondrial Ca(2+) uptake may occur within a limited concentration range in which Ca(2+)-sensitive dehydrogenases are activated to control the mitochondrial redox state in stimulated chromaffin cells.