Home>>Signaling Pathways>> Cancer Biology>>(R)-(-)-Mellein

(R)-(-)-Mellein

(Synonyms: (R)-蜂蜜曲菌素,以及(S)-蜂蜜曲菌素,(R)-Mellein) 目录号 : GC41620

A dihydroisocoumarin compound with antibacterial, antimalarial, antifungal , and anticancer effects

(R)-(-)-Mellein Chemical Structure

Cas No.:480-33-1

规格 价格 库存 购买数量
5mg
¥686.00
现货
10mg
¥1,302.00
现货
50mg
¥5,482.00
现货
100mg
¥9,593.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(R)-(-)-Mellein is a dihydroisocoumarin compound produced by A. ochraceus Wilhelm. It has a variety of biological activities including antibacterial, antimalarial, antifungal, and anticancer effects. (R)-(-)-Mellein inhibits proliferation of human breast cancer (MCF-7 and MDA-MB-468) and melanoma (SK-MEL-28 and Malme-3M) cell lines with IC50 values greater than 200 μM.

Chemical Properties

Cas No. 480-33-1 SDF
别名 (R)-蜂蜜曲菌素,以及(S)-蜂蜜曲菌素,(R)-Mellein
Canonical SMILES CC(O1)CC2=C(C(O)=CC=C2)C1=O
分子式 C10H10O3 分子量 178.2
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,Ethanol: 30 mg/ml,Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.6117 mL 28.0584 mL 56.1167 mL
5 mM 1.1223 mL 5.6117 mL 11.2233 mL
10 mM 0.5612 mL 2.8058 mL 5.6117 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Diversity of Neofusicoccum parvum for the Production of the Phytotoxic Metabolites (-)-Terremutin and ( R)-Mellein

J Fungi (Basel) 2022 Mar 19;8(3):319.PMID:35330321DOI:10.3390/jof8030319.

Two Neofusicoccumparvum isolates and a UV mutant were characterized for their phytotoxin production in vitro, their pathogenicity on grapevine, and their genome sequenced. The isolate Np-Bt67 produced high level of (-)-terremutin, but almost no (R)-mellein, and it was the most aggressive on grapevine, triggering apoplexy. Similar symptoms were not induced by purified (-)-terremutin. The isolate Bourgogne S-116 (Np-B) produced 3-fold less (-)-terremutin and high amounts of (R)-mellein, but it was less aggressive on grapevine than Np-Bt67. The UV9 mutant obtained from Np-B (NpB-UV9) no longer produced (-)-terremutin but overproduced (R)-mellein by 2.5-fold, and it was as pathogenic as its parent. NpB-UV9 differed from its parent by simple mutations in two genes (transcription factor UCR-NP2_6692, regulatory protein UCR-NP2_9007), not located neither near (R)-mellein, nor (-)-terremutin biosynthetic genes, but likely involved in the control of (-)-terremutin biosynthesis. Grapevine immunity was disturbed upon challenge with these pathogens or purified phytotoxins, leading to an upregulation of SA-dependent defenses, while (-)-terremutin interfered with host JA/ET-dependent defenses. Our results suggest that neither (-)-terremutin nor (R)-mellein alone is essential for the pathogenicity of N. parvum on grapevine, since isolate/mutant non-producing these toxins in vitro is pathogenic. However, these phytotoxins could play a quantitative role in the infection process.

An in planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum

Appl Environ Microbiol 2015 Jan;81(1):177-86.PMID:25326302DOI:10.1128/AEM.02745-14.

Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases.

Melleins-Intriguing Natural Compounds

Biomolecules 2020 May 15;10(5):772.PMID:32429259DOI:10.3390/biom10050772.

Melleins are 3,4-dihydroisocoumarins mainly produced by fungi, but also by plants, insects and bacteria. These specialized metabolites play important roles in the life cycles of the producers and they are involved in many biochemical and ecological processes. This review outlines the isolation and chemical and biological characterizations of natural-occurring melleins from the first report of (R)-mellein in 1933 to the most recent advances in their characterization in 2019. In addition, the pathways that could be involved in mellein biosynthesis are discussed, along with the enzymes and genes involved.

Synthesis of (R)-mellein by a partially reducing iterative polyketide synthase

J Am Chem Soc 2012 Jul 25;134(29):11924-7.PMID:22793256DOI:10.1021/ja304905e.

Mellein and the related 3,4-dihydroisocoumarins are a family of natural products with interesting biological properties. The mechanisms of dihydroisocoumarin biosynthesis remain largely speculative today. Here we report the synthesis of mellein by a partially reducing iterative polyketide synthase (PR-PKS) as a pentaketide product. Remarkably, despite the head-to-tail homology shared with several fungal and bacterial PR-PKSs, the mellein synthase exhibits a distinct keto reduction pattern in the synthesis of the pentaketide. We present evidence to show that the ketoreductase (KR) domain alone is able to recognize and differentiate the polyketide intermediates, which provides a mechanistic explanation for the programmed keto reduction in these PR-PKSs.

Identification of Mellein as a Pathogenic Substance of Botryosphaeria dothidea by UPLC-MS/MS Analysis and Phytotoxic Bioassay

J Agric Food Chem 2021 Aug 4;69(30):8471-8481.PMID:34304561DOI:10.1021/acs.jafc.1c03249.

Botryosphaeria dothidea is a pathogenic fungus that can cause apple ring rot, a destructive apple disease in China. There have been reports on its molecular pathogenesis, but the pathogenic substances still remain unknown. In the present study, instrument analysis including UPLC-high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance showed that B. dothidea fermentation broth contained (R)-(-)-Mellein, a well-known fungal enantiomer of mellein. For further confirmation, a UPLC-MS/MS method for the determination of mellein was developed and validated. By this method, mellein was found to also exist in B. dothidea-infected apple fruits and branches with concentration ranges of 0.14-0.94 and 5.88-80.29 mg/kg, respectively. The concentration in fruits reached a peak at 48 h after pathogen inoculation, while a sustained concentration increase was achieved within 11 days for branches. Simultaneously, it was evident that there was a relation between disease spot expansion and mellein production kinetics in apple tissue. Phytotoxic bioassay showed that mellein could cause discoloration and death of apple leaves and browning in stems. Therefore, we confirmed that mellein was one of the pathogenic substances of B. dothidea. The present study provided additional data for the research on the pathogenesis of this pathogen.