Home>>PC945

PC945 Sale

目录号 : GC39635

PC945 是一种有效的抗真菌 (antifungal) 三唑类药物,对多种敏感和耐药的烟曲霉菌株都具有抗药性。PC945 是烟曲霉甾醇 14α-去甲基酶 (CYP51A/CYP51B) 活性的有效、紧密结合的抑制剂,IC50s 分别为 0.23 μM 和 0.22 μM。

PC945 Chemical Structure

Cas No.:1931946-73-4

规格 价格 库存 购买数量
5mg
¥4,500.00
现货
10mg
¥7,650.00
现货
50mg
¥21,600.00
现货
100mg
¥32,400.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PC945, a potent, long-acting antifungal triazole, possesses activity against a broad range of both azole-susceptible and azole-resistant strains of Aspergillus fumigatus. PC945 is also a potent, tightly binding inhibitor of A. fumigatus sterol 14α-demethylase activity, CYP51A and CYP51B, with IC50s of 0.23 μM and 0.22 μM, respectively[1][2].

[1]. Colley T, et al. In Vitro and In Vivo Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: e02280-16. [2]. Colley T, et al. Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci Rep. 2019 Jul 1;9(1):9482.

Chemical Properties

Cas No. 1931946-73-4 SDF
Canonical SMILES O=C(NC1=CC=C(F)C=C1)C(C=C2)=CC=C2N3CCN(C4=CC=C(OC[C@@H]5CO[C@](C6=CC=C(F)C=C6F)(CN7N=CN=C7)C5)C(C)=C4)CC3
分子式 C38H37F3N6O3 分子量 682.73
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4647 mL 7.3235 mL 14.6471 mL
5 mM 0.2929 mL 1.4647 mL 2.9294 mL
10 mM 0.1465 mL 0.7324 mL 1.4647 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

PC945, a Novel Inhaled Antifungal Agent, for the Treatment of Respiratory Fungal Infections

J Fungi (Basel) 2020 Dec 17;6(4):373.PMID:33348852DOI:10.3390/jof6040373.

Disease due to pulmonary Aspergillus infection remains a significant unmet need, particularly in immunocompromised patients, patients in critical care and those with underlying chronic lung diseases. To date, treatment using inhaled antifungal agents has been limited to repurposing available systemic medicines. PC945 is a novel triazole antifungal agent, a potent inhibitor of CYP51, purpose-designed to be administered via inhalation for high local lung concentrations and limited systemic exposure. In preclinical testing, PC945 is potent versus Aspergillus spp. and Candida spp. and showed two remarkable properties in preclinical studies, in vitro and in vivo. The antifungal effects against Aspergillus fumigatus accumulate on repeat dosing and improved efficacy has been demonstrated when PC945 is dosed in combination with systemic anti-fungal agents of multiple classes. Resistance to PC945 has been induced in Aspergillus fumigatus in vitro, resulting in a strain which remained susceptible to other antifungal triazoles. In healthy volunteers and asthmatics, nebulised PC945 was well tolerated, with limited systemic exposure and an apparently long lung residency time. In two lung transplant patients, PC945 treated an invasive pulmonary Aspergillus infection that had been unresponsive to multiple antifungal agents (systemic ± inhaled) without systemic side effects or detected drug-drug interactions.

Novel antifungal agents in clinical trials

F1000Res 2021 Jun 28;10:507.PMID:35136573DOI:10.12688/f1000research.28327.2.

Invasive fungal diseases due to resistant yeasts and molds are an important and increasing public health threat, likely due to a growing population of immunosuppressed hosts, increases in antifungal resistance, and improvements in laboratory diagnostics. The significant morbidity and mortality associated with these pathogens bespeaks the urgent need for novel safe and effective therapeutics. This review highlights promising investigational antifungal agents in clinical phases of development: fosmanogepix, ibrexafungerp, rezafungin, encochleated amphotericin B, oteseconazole (VT-1161), VT-1598, PC945, and olorofim. We discuss three first-in-class members of three novel antifungal classes, as well as new agents within existing antifungal classes with improved safety and tolerability profiles due to enhanced pharmacokinetic and pharmacodynamic properties.

Safety and nonclinical and clinical pharmacokinetics of PC945, a novel inhaled triazole antifungal agent

Pharmacol Res Perspect 2021 Feb;9(1):e00690.PMID:33340279DOI:10.1002/prp2.690.

PC945 is a novel antifungal triazole formulated for nebulized delivery to treat lung Aspergillus infections. Pharmacokinetic and safety profiles from nonclinical studies and clinical trials in healthy subjects, and subjects with mild asthma were characterized. Toxicokinetics were assessed following daily 2-hour inhalation for 14 days. Potential for drug-drug interactions was evaluated using pooled human liver microsomes. Clinical safety and pharmacokinetics were assessed following (a) single inhaled doses (0.5-10 mg), (b) 7-day repeat doses (5 mg daily) in healthy subjects; (c) a single dose (5 mg) in subjects with mild asthma. Cmax occurred 4 hours (rats) or immediately (dogs) after a single dose. PC945 lung concentrations were substantially higher (>2000-fold) than those in plasma. PC945 only inhibited CYP3A4/5 substrate metabolism (IC50 : 1.33 µM [testosterone] and 0.085 µM [midazolam]). Geometric mean Cmax was 322 pg/mL (healthy subjects) and 335 pg/mL (subjects with mild asthma) 4-5 hours (median tmax ) after a single inhalation (5 mg). Following repeat, once daily inhalation (5 mg), Day 7 Cmax was 951 pg/mL (0.0016 µM) 45 minutes after dosing. Increases in Cmax and AUC0-24h were approximately dose-proportional (0.5-10 mg). PC945 administration was well tolerated in both healthy subjects and subjects with mild asthma. Treatment-emergent adverse events were mild/moderate and resolved before the study ended. No clinically significant lung function changes were observed. PC945 pharmacokinetics translated from nonclinical species to humans showed slow absorption from lungs and low systemic exposure, thereby limiting the potential for adverse side effects and drug interactions commonly seen with systemically delivered azoles.

Relationship between anti-fungal effects and lung exposure of PC945, a novel inhaled antifungal agent, in Aspergillus fumigatus infected mice: Pulmonary PK-PD analysis of anti-fungal PC945

Eur J Pharm Sci 2021 Aug 1;163:105878.PMID:34015430DOI:10.1016/j.ejps.2021.105878.

PC945 is a novel antifungal agent, optimised for inhaled treatment. In this study, the relationship between antifungal effects of PC945 and its exposure in the lungs was investigated in Aspergillus fumigatus intranasally infected, temporarily neutropenic mice. Mice were given prophylactic PC945 intranasally once daily (0.56 µg/mouse) on either Day -7 to 0 (8 doses) or Day -1 to 0 (2 doses). Lung tissue, plasma and bronchoalveolar lavage (BAL) fluid were collected 24 or 72 h post A. fumigatus inoculation for biomarker and pharmacokinetic analyses. BAL cell pellets and supernatants were prepared separately by centrifugation. 8 prophylactic doses of PC945 were found to demonstrate significantly stronger antifungal effects (lung fungal burden and galactomannan (GM) in BAL and plasma) than prophylaxis with 2 doses. PC945 concentrations were below the limit of detection in plasma but readily measured in lung extracts. The concentrations were much higher after extended prophylaxis (709 and 312 ng/g of lung) than short prophylaxis (301 and 195 ng/g of lung) at 24 and 72 h post last dose, respectively, suggesting PC945 accumulation in whole lung after repeat dosing although it was likely to be a mixture of dissolved and undissolved PC945, meaning that the data should be interpreted with caution. Interestingly, low concentrations of PC945 were detected in BAL supernatant (6.6 and 1.9 ng/ml) whereas high levels of PC945 were measured in BAL cell pellets (626 and 406 ng/ml) at 24 and 72 h post last dose, respectively, in extended prophylaxis. In addition, the PC945 concentrations in BAL cells showed a statistically significant correlation with measured anti-fungal activities. These observations will be pursued, and it is intended that BAL cell concentrations of PC945 be measured in future clinical studies rather than standard measurement in BAL itself. Thus, PC945's profile makes it an attractive potential prophylactic agent for the prevention of pulmonary fungal infections.

Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection

Sci Rep 2019 Jul 1;9(1):9482.PMID:31263150DOI:10.1038/s41598-019-45890-w.

Invasive pulmonary Aspergillosis is a leading cause of morbidity and mortality in immunosuppressed patients and treatment outcomes using oral antifungal triazoles remain suboptimal. Here we show that combining topical treatment using PC945, a novel inhaled triazole, with systemic treatment using known triazoles demonstrated synergistic antifungal effects against Aspergillus fumigatus (AF) in an in vitro human alveolus bilayer model and in the lungs of neutropenic immunocompromised mice. Combination treatment with apical PC945 and either basolateral posaconazole or voriconazole resulted in a synergistic interaction with potency improved over either compound as a monotherapy against both azole-susceptible and resistant AF invasion in vitro. Surprisingly there was little, or no synergistic interaction observed when apical and basolateral posaconazole or voriconazole were combined. In addition, repeated prophylactic treatment with PC945, but not posaconazole or voriconazole, showed superior effects to single prophylactic dose, suggesting tissue retention and/or accumulation of PC945. Furthermore, in mice infected with AF intranasally, 83% of animals treated with a combination of intranasal PC945 and oral posaconazole survived until day 7, while little protective effects were observed by either compound alone. Thus, the combination of a highly optimised topical triazole with oral triazoles potentially induces synergistic effects against AF infection.