Home>>Signaling Pathways>> Immunology/Inflammation>> NF-κB>>NDMC101

NDMC101 Sale

目录号 : GC44353

A salicylanilide derivative

NDMC101 Chemical Structure

Cas No.:1308631-40-4

规格 价格 库存 购买数量
5 mg
¥714.00
现货
10 mg
¥1,224.00
现货
25 mg
¥2,549.00
现货
50 mg
¥4,079.00
现货
100 mg
¥6,118.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

Chemical Properties

Cas No. 1308631-40-4 SDF
Canonical SMILES OC1=C(C(NC2=CC=C(Cl)C=C2F)=O)C=CC=C1
分子式 C13H9ClFNO2 分子量 265.7
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,DMSO:PBS (pH 7.2) (1:2): 0.33 mg/ml 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7636 mL 18.8182 mL 37.6364 mL
5 mM 0.7527 mL 3.7636 mL 7.5273 mL
10 mM 0.3764 mL 1.8818 mL 3.7636 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A benzamide-linked small molecule NDMC101 inhibits NFATc1 and NF-κB activity: a potential osteoclastogenesis inhibitor for experimental arthritis

J Clin Immunol 2012 Aug;32(4):762-77.PMID:22396044DOI:10.1007/s10875-012-9660-9.

Purpose: Using receptor activator of NF-κB ligand (RANKL) induced osteoclast differentiation on RAW264.7 as a screening tool; we synthesize and identify small-molecule inhibitors preserving immunomodulatory effects as therapeutics for rheumatoid arthritis. Methods: Differentiation into osteoclast-like cells was examined by tartrate-resistant acid phosphatase (TRAP) staining and expression of osteoclast differentiation markers. Collagen-induced arthritis (CIA) mice were administered test articles by gavages to assess its efficacy. Then clinical, histological, and biochemical parameters were assessed to determine the effects of N-(4-chloro-2-fluorophenyl)-2-hydroxybenzamide (NDMC101) on synovial inflammation and bone erosion by hematoxlin and eosin staining and Enzyme-linked immunosorbent assay (ELISA). Results: NDMC101 markedly inhibited RANKL-induced formation of TRAP+ multinucleated cells in RAW264.7 and bone marrow macrophage cells (BMMs). Moreover, pit formation assay showed that NDMC101 significantly reduced the bone-resorbing activity of mature osteoclasts. In CIA mice, oral administration of NDMC101 reduced arthritic index and mitigated bone erosion. Serum TNF-α and IL-1β concentrations in these mice were decreased significantly at the higher dose of 62.5 mg/kg. Conclusions: Screening of our chemical library, our findings suggest that NDMC101 inhibits osteoclastogenesis which also ameliorates paw swelling and inflammatory bone destruction. Its efficacy is associated with the inhibition of such transcription factors as NF-κB and NFATc1 as well as multiple protein kinases, including p38, ERK, and JNK. There results guarantee further clinical tests of NDMC101 for its therapeutic potential in the treatment of inflammation-induced bone diseases.

Novel inhibitors of RANKL-induced osteoclastogenesis: Design, synthesis, and biological evaluation of 6-(2,4-difluorophenyl)-3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-diones

Bioorg Med Chem 2015 Aug 1;23(15):4522-4532.PMID:26081760DOI:10.1016/j.bmc.2015.06.007.

A series of novel 6-(2,4-difluorophenyl)-3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives were synthesized and evaluated for their inhibitory effects on osteoclast activities by using TRAP-staining assay. Among the tested compounds, 3d and 3h exhibited more potent osteoclast-inhibitory activities than the lead compound NDMC503 (a ring-fused structure of NDMC101), as reported in our previous study. Both 3d and 3h exhibited two-fold increase in activity compared to NDMC503. In addition, our biological results indicated that 3d and 3h could suppress RANKL-induced osteoclastogenesis-related marker genes, such as NFATc1, c-fos, TRAP, and cathepsin K. Notably, 3d could significantly attenuate the bone-resorbing activity of osteoclasts in the pit formation assay. Thus, this study might provide a new class of lead structures that warrant further development as potential anti-resorptive agents.

Discovery of 5-(2',4'-difluorophenyl)-salicylanilides as new inhibitors of receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis

Eur J Med Chem 2015 Jun 15;98:115-26.PMID:26005025DOI:10.1016/j.ejmech.2015.05.015.

To improve the inhibitory potency of lead compound NDMC101 on RANKL-induced osteoclastogenesis, a series of new 5-(2',4'-difluorophenyl)-salicylanilide derivatives were synthesized and evaluated for osteoclast inhibition by using TRAP-staining assay. Among them, both of compounds 6d and 6i showed three-fold increase in osteoclast-inhibitory activities compared to NDMC101 at half-inhibitory concentration. Further, the mechanistic study showed that 6d and 6i could suppress RANKL-induced osteoclastogenesis-related genes, such as NFATc1, c-fos, TRAP, and cathepsin K. Their inhibitory activities were further confirmed by including specific inhibition of NF-κB and NFATc1 expression levels in nucleus. In addition, 6d and 6i also could significantly attenuate bone-resorbing activity of osteoclasts by performing pit formation assay. Thus, a new class of 5-(2',4'-difluorophenyl)-salicylanilide derivatives may be considered as essential lead structures for the further development of anti-resorptive agents.