Home>>Signaling Pathways>> Cardiovascular>> Myocardial Contractility>>KR-32568

KR-32568 Sale

目录号 : GC44013

An NHE-1 inhibitor

KR-32568 Chemical Structure

Cas No.:852146-73-7

规格 价格 库存 购买数量
1mg
¥1,610.00
现货
5mg
¥2,827.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

KR-32568 is an inhibitor of the sodium-hydrogen exchanger isoform-1 (NHE-1; IC50 = 230 nM). It restores cardiac contractile function ex vivo in an isolated ischemic rat heart model when used at a concentration of 10 μM. KR-32568 (0.3 mg/kg) reduces myocardial infarct size in a rat model of ischemia and reperfusion injury.

Chemical Properties

Cas No. 852146-73-7 SDF
Canonical SMILES FC1=CC=C(C)C(C2=CC=C(C(NC(N)=N)=O)O2)=C1
分子式 C13H12FN3O2 分子量 261.3
溶解度 DMSO: ~ 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.827 mL 19.1351 mL 38.2702 mL
5 mM 0.7654 mL 3.827 mL 7.654 mL
10 mM 0.3827 mL 1.9135 mL 3.827 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Cardioprotective effects of [5-(2-methyl-5-fluorophenyl)furan-2-ylcarbonyl]guanidine (KR-32568) in an anesthetized rat model of ischemia and reperfusion heart injury

Pharmacology 2005 Dec;75(1):37-44.PMID:15942274DOI:10.1159/000086192.

The effects of a novel sodium/hydrogen exchanger-1 (NHE-1) inhibitor, KR-32568, were studied in an anesthetized rat model of 30 min ischemia/2.5 h reperfusion heart injury. KR-32568 dose-dependently inhibited NHE-1-mediated rabbit platelet swelling induced by intracellular acidification. In our anesthetized rat model, KR-32568 reduced infarct size from 67 (control) to 43 and 24% at 0.1 and 1.0 mg/kg (i.v. bolus, given 10 min before ischemia), respectively. KR-32568 at the same doses also significantly reduced the total number of ventricular premature beats during ischemia/reperfusion from 530 (control) to 266 and 115 beats, ventricular tachycardia (VT) incidence from 51 (control) to 21 and 8, VT duration from 238 s (control) to 63 and 33 s, ventricular fibrillation (VF) incidence from 17 (control) to 8 and 0, and VF duration from 85 s to 18 and 1 s. These results indicate that KR-32568 may exert potent cardioprotective effects in rats via inhibition of sodium/hydrogen exchanger-1.

Persistent sodium current and Na+/H+ exchange contributes to the augmentation of the reverse Na+/Ca2+ exchange during hypoxia or acute ischemia in ventricular myocytes

Pflugers Arch 2012 Apr;463(4):513-22.PMID:22234427DOI:10.1007/s00424-011-1070-y.

The increases in persistent sodium currents (I (Na.P)) and Na(+)/H(+) exchange (NHE) causes intracellular Ca(2+) overload. The objective of this study was to determine the contribution of I (Na.P) and NHE on the hypoxia- or acute ischemia-induced increase in the reverse Na(+)/Ca(2+) exchange current (HIR- or AIR-I (NCX)). I (Na.P) and I (NCX) in rabbit ventricular myocytes were recorded during hypoxia or acute ischemia, combination of acidosis (pH values were 6.0 intracellularly and 6.8 extracellularly) and hypoxia, using whole-cell patch-clamp techniques. The results indicate that (1) under hypoxic condition, the augmentation of both HIR-I (NCX) and I (Na.P) was inhibited by TTX (2 to 8 μM) in a concentration-dependent manner. The inhibitions of I (Na,P) and HIR-I (NCX) reached maximum in the presence of either 4 μM TTX or 10 μM KR-32568 (a NHE inhibitor), respectively. The maximal inhibitions of HIR-I (NCX) by 4 μM TTX and 10 μM KR-32568 were 72.54% and 16.89%, respectively. (2) Administration of 2 μM TTX and 10 μM KR-32568 in either order in the same cells decreased HIR-I (NCX) by 64.83% and 16.94%, respectively. (3) I (Na.P) and the reverse I (NCX) were augmented during acute ischemia. TTX (4 μM) and KR-32568 (10 μM) reduced AIR-I (NCX) by 73.39% and 24.13%, respectively. (4) Under normoxic condition, veratridine (20 μM) significantly increased I (Na.P) and the reverse I (NCX), which was reversed by 4 μM TTX. In conclusion, during hypoxia or acute ischemia, both increased I (Na.P) and NHE contribute to the HIR- or AIR-I (NCX) with the former playing a major role comparing with the latter.

Hydrogen sulfide regulates Na+/H+ exchanger activity via stimulation of phosphoinositide 3-kinase/Akt and protein kinase G pathways

J Pharmacol Exp Ther 2011 Nov;339(2):726-35.PMID:21865440DOI:10.1124/jpet.111.184754.

Intracellular pH (pH(i)) is an important endogenous modulator of cardiac function. Inhibition of Na(+)/H(+) exchanger-1 (NHE-1) protects the heart by preventing Ca(2+) overload during ischemia/reperfusion. Hydrogen sulfide (H(2)S) has been reported to produce cardioprotection. The present study was designed to investigate the pH regulatory effect of H(2)S in rat cardiac myocytes and evaluate its contribution to cardioprotection. It was found that sodium hydrosulfide (NaHS), at a concentration range of 10 to 1000 μM, produced sustained decreases in pH(i) in the rat myocytes in a concentration-dependent manner. NaHS also abolished the intracellular alkalinization caused by trans-(±)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide methane-sulfonate hydrate (U50,488H), which activates NHEs. Moreover, when measured with an NHCl(4) prepulse method, NaHS was found to significantly suppress NHE-1 activity. Both NaHS and cariporide or [5-(2-methyl-5-fluorophenyl)furan-2-ylcarbonyl]guanidine (KR-32568), two NHE inhibitors, protected the myocytes against ischemia/reperfusion injury. However, coadministration of NaHS with KR-32568 did not produce any synergistic effect. Functional study showed that perfusion with NaHS significantly improved postischemic contractile function in isolated rat hearts subjected to ischemia/reperfusion. Blockade of phosphoinositide 3-kinase (PI3K) with 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), Akt with Akt VIII, or protein kinase G (PKG) with (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]]enzodiazocine-10-carboxylic acid, methyl ester (KT5823) significantly attenuated NaHS-suppressed NHE-1 activity and/or NaHS-induced cardioprotection. Although KT5823 failed to affect NaHS-induced Akt phosphorylation, Akt inhibitor did attenuate NaHS-stimulated PKG activity. In conclusion, this work demonstrated for the first time that H(2)S produced cardioprotection via the suppression of NHE-1 activity involving a PI3K/Akt/PKG-dependent mechanism.