Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> TRP Channel>>JNc-440

JNc-440 Sale

目录号 : GC65006

JNc-440 是一种有效的抗高血压剂。JNc-440 可增强内皮细胞瞬时受体电位香草酸亚型 4 (TRPV4) 和钙离子激活钾通道 3 (KCa2.3) 的相互作用。JNc-440 还能增强小鼠血管扩张,具有降压作用。

JNc-440 Chemical Structure

Cas No.:1119503-63-7

规格 价格 库存 购买数量
5mg
¥900.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

JNc-440 is a potent antihypertensive agent. JNc-440 can enhance the interaction of TRPV4 and Ca2+-activated potassium channel 3 (KCa2.3) in endothelial cells. JNc-440 can also enhance vasodilation, and exerted antihypertensive effects in mice[1].

JNc-440 (1 mg/kg; IV; single dosage) improves endothelium-dependent relaxation in small resistance arteries and to lower blood pressure[1].

[1]. He D, et al. Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol Med. 2017 Nov;9(11):1491-1503.

Chemical Properties

Cas No. 1119503-63-7 SDF Download SDF
分子式 C26H24N4O3 分子量 440.49
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2702 mL 11.351 mL 22.702 mL
5 mM 0.454 mL 2.2702 mL 4.5404 mL
10 mM 0.227 mL 1.1351 mL 2.2702 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction

EMBO Mol Med 2017 Nov;9(11):1491-1503.PMID:28899928DOI:PMC5666316

The currently available antihypertensive agents have undesirable adverse effects due to systemically altering target activity including receptors, channels, and enzymes. These effects, such as loss of potassium ions induced by diuretics, bronchospasm by beta-blockers, constipation by Ca2+ channel blockers, and dry cough by ACEI, lead to non-compliance with therapies (Moser, 1990). Here, based on new hypertension mechanisms, we explored a new antihypertensive approach. We report that transient receptor potential vanilloid 4 (TRPV4) interacts with Ca2+-activated potassium channel 3 (KCa2.3) in endothelial cells (ECs) from small resistance arteries of normotensive humans, while ECs from hypertensive patients show a reduced interaction between TRPV4 and KCa2.3. Murine hypertension models, induced by high-salt diet, N(G)-nitro-l-arginine intake, or angiotensin II delivery, showed decreased TRPV4-KCa2.3 interaction in ECs. Perturbation of the TRPV4-KCa2.3 interaction in mouse ECs by overexpressing full-length KCa2.3 or defective KCa2.3 had hypotensive or hypertensive effects, respectively. Next, we developed a small-molecule drug, JNc-440, which showed affinity for both TRPV4 and KCa2.3. JNc-440 significantly strengthened the TRPV4-KCa2.3 interaction in ECs, enhanced vasodilation, and exerted antihypertensive effects in mice. Importantly, JNc-440 specifically targeted the impaired TRPV4-KCa2.3 interaction in ECs but did not systemically activate TRPV4 and KCa2.3. Together, our data highlight the importance of impaired endothelial TRPV4-KCa2.3 coupling in the progression of hypertension and suggest a novel approach for antihypertensive drug development.