Home>>Signaling Pathways>> Microbiology & Virology>> Fungal>>Hydroxyphenyllactic acid

Hydroxyphenyllactic acid Sale

(Synonyms: 3-(4-羟基苯基)乳酸) 目录号 : GC33991

Hydroxyphenyllacticacid是一种抗真菌的代谢物。

Hydroxyphenyllactic acid Chemical Structure

Cas No.:306-23-0

规格 价格 库存 购买数量
10mg
¥400.00
现货
50mg
¥1,250.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Hydroxyphenyllactic acid is an antifungal metabolite.

Hydroxyphenyllactic acid (4-hydroxyphenyllactic acid) is an antifungal metabolite[1].

[1]. Mu W, et al. Production of 4-hydroxyphenyllactic acid by Lactobacillus sp. SK007 fermentation. J Biosci Bioeng. 2010 Apr;109(4):369-71.

Chemical Properties

Cas No. 306-23-0 SDF
别名 3-(4-羟基苯基)乳酸
Canonical SMILES O=C(O)C(O)CC1=CC=C(O)C=C1
分子式 C9H10O4 分子量 182.17
溶解度 DMSO : 125 mg/mL (686.17 mM) 储存条件 4°C, away from moisture and light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 5.4894 mL 27.4469 mL 54.8938 mL
5 mM 1.0979 mL 5.4894 mL 10.9788 mL
10 mM 0.5489 mL 2.7447 mL 5.4894 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula

Am J Clin Nutr 2020 Jun 1;111(6):1190-1202.PMID:32330237DOI:10.1093/ajcn/nqaa076.

Background: Neonatal diet has a large influence on child health and might modulate changes in fecal microbiota and metabolites. Objectives: The aim is to investigate fecal microbiota and metabolites at different ages in infants who were breastfed (BF), received dairy-based milk formula (MF), or received soy-based formula (SF). Methods: Fecal samples were collected at 3 (n = 16, 12, and 14, respectively), 6 (n = 20, 19, and 15, respectively), 9 (n = 12, 11, and 12, respectively), and 12 mo (n = 14, 14, and 15, respectively) for BF, MF, and SF infants. Infants that breastfed until 9 mo and switched to formula were considered as no longer breastfeeding at 12 mo. Microbiota data were obtained using 16S ribosomal RNA sequencing. Untargeted metabolomics was conducted using a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. The data were analyzed using R (version 3.6.0) within the RStudio (version 1.1.463) platform. Results: At 3, 6, and 9 mo of age BF infants had the lowest α-diversity, SF infants had the highest diversity, and MF was intermediate. Bifidobacterium was 2.6- to 5-fold lower in SF relative to BF infants through 1 y of life. An unidentified genus from Ruminococcaceae higher in the SF (2%) than in the MF (0.4%) and BF (0.08%) infants at 3 mo of age was observed. In BF infants higher levels of butyric acid, d-sphingosine, kynurenic acid, indole-3-lactic acid, indole-3-acetic acid, and betaine were observed than in MF and SF infants. At 3 mo Ruminococcaceae was positively correlated to azelaic, gentisic, isocitric, sebacic, and syringic acids. At 6 mo Oscillospira was negatively correlated with 3-hydroxybutyric-acid, hydroxy-hydrocinnamic acid, and betaine whereas Bifidobacterium was negatively associated with 5-hydroxytryptamine. At 12 mo of age, Lachnospiraceae was negatively associated with Hydroxyphenyllactic acid. Conclusions: Infant diet has a large impact on the fecal microbiome and metabolome in the first year of life.This study was registered at clinicaltrials.gov as NCT00616395.

Interference of hydroxyphenylpyruvic acid, Hydroxyphenyllactic acid and tyrosine on routine serum and urine clinical chemistry assays; implications for biochemical monitoring of patients with alkaptonuria treated with nitisinone

Clin Biochem 2019 Sep;71:24-30.PMID:31228435DOI:10.1016/j.clinbiochem.2019.06.010.

Objectives: We have assessed the effect of elevated concentrations of hydroxyphenylpyruvic acid (HPPA), Hydroxyphenyllactic acid (HPLA) and tyrosine, on a range of chemistry tests in serum and urine to explore the potential for chemical interference on routine laboratory analyses in patients with alkaptonuria (AKU) treated with nitisinone and similarly implications for patients with hereditary tyrosinemia type 1 (HT-1). Materials and methods: HPPA, HPLA and tyrosine were added separately to pooled serum from subjects without AKU in a range of assays with Roche Modular chemistries. Effects on urine were assessed by changes in urine strip chemistries after mixing a positive control urine with various amounts of the test compounds and reading on a Siemens urine strip meter. Results: No significant effect (p > 0.1) was observed up to 225 μmol/L of HPPA and HPLA, and up to 5000 μmol/L tyrosine, on any of the serum-based assays including those with peroxidase-coupled reaction systems of enzymatic creatinine, urate, total cholesterol, HDL cholesterol and triglyceride. Both the monohydroxy HPPA, and the dihydroxy homogentisic acid (HGA), at increased urine concentrations typical of nitisinone-treated AKU and non-treated AKU respectively, did however show marked negative interference in strip assays for glucose and leucocytes; i.e. those with peroxide-linked endpoints. The effect of increased HPLA was less marked. Conclusions: In patients with AKU or on nitisinone treatment and HT-1 patients on nitisinone, urine strip chemistry testing should be used sparingly, if at all, to avoid false negative reporting. It is recommended that urine assays should be organised with a suitable specialist laboratory.

Evolution of rosmarinic acid biosynthesis

Phytochemistry 2009 Oct-Nov;70(15-16):1663-79.PMID:19560175DOI:10.1016/j.phytochem.2009.05.010.

Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and Hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum

Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018 Sep;35(9):1803-1818.PMID:30016195DOI:10.1080/19440049.2018.1500718.

The control of fungal contamination is particularly important to avoid both spoilage of food and feed products and the occurrence of toxic compounds, known as mycotoxins. Some lactic acid bacteria (LAB) strains have shown the capacity to inhibit fungal growth and the production of mycotoxins. In this work, cell-free supernatants (CFS) of Lactobacillus plantarum UM55 and Lactobacillus buchneri UTAD104 were tested against Penicillium nordicum radial growth and OTA production. When CFS of these strains were used, the radial growth of the fungus was inhibited by less than 20%, but the production of OTA was reduced by approx. 60%. These antifungal effects resulted from organic acids produced by LAB. The CFS of L. plantarum UM55 contained lactic acid, phenyllactic acid (PLA), Hydroxyphenyllactic acid (OH-PLA) and indole lactic acid (ILA), while L. buchneri UTAD104 CFS contained acetic acid, lactic acid and PLA. These organic acids were further tested individually for their inhibitory capacity. Calculation of the inhibitory concentrations (ICs) showed that acetic acid, ILA and PLA were the most effective in inhibiting P. nordicum growth and OTA production. When the inhibitory activity of LAB cells incorporated into the culture medium was tested, L. buchneri UTAD104 inhibited the production of OTA entirely in all conditions tested, but fungal growth was only inhibited completely by the highest concentrations of cells. Acetic acid production was primarily responsible for this effect. In conclusion, the ability of LAB to inhibit mycotoxigenic fungi depends on strain capability to produce specific organic acids, and those acids may differ from strain to strain. Also, the use of LAB cells, especially from L. buchneri, in food products prone to contamination with P. nordicum (e.g. dry-cured meats and cheeses) may be an alternative solution to control fungal growth and OTA production.

Metabolic modeling of Rosmarinic acid biosynthetic pathway

Bioinformation 2010 Oct 6;5(4):168-72.PMID:21364781DOI:10.6026/97320630005168.

Rosmarinic acid (RA) is an ester of caffeic acid and 3, 4-dihydroxyphenyllacticacid. It is commonly found in Coleus blumei, Salvia officinalis, Melissa officinalis and Rosmarinus officinalis. The biosynthesis of RA starts with precursor molecules L-phenylalanine and L-tyrosine. Simulation of RA biosynthetic pathway was done using Gepasi Software, includes the reaction kinetics of each step of the pathway and different integration methods such as Euler's method. Optimization of the significant parameters responsible for RA biosynthesis was carried out. As the goal of the work was to increase the productivity of i.e. to maximize the concentration of the RA, the final concentration of RA ([RA]t) was selected as an objective function and selected initial concentration of the Caffeoyl-3'-4'Hydroxyphenyllactic acid (3'C4HPLA) as parameter constraint and varied its initial concentration as: 0≤ [3'C4HPLA]i ≤ 0.025. Several optimization methods such as Simulated annealing, Evolutionary algorithms and Genetic algorithms were used to optimize the objective function. After optimization the final concentration of RA was slightly higher (4.566132e-002 mM) than before optimization (4.047119e- 002 mM). On the basis of results obtained, it is clear that 4-hydroxyphenyllactic acid and 3'C4HPLA play major role in the high productivity of the RA.