Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>H-Phe-Phe-OH

H-Phe-Phe-OH Sale

(Synonyms: L-苯丙氨酸-L-苯丙氨酸) 目录号 : GC31316

H-Phe-Phe-OH (Phenylalanyl-phenylalanine, Phe-Phe, L-Phe-L-Phe) is a short peptide diphenylalanine with utility for potential applications in biomaterial chemistry, sensors and bioelectronics.

H-Phe-Phe-OH Chemical Structure

Cas No.:2577-40-4

规格 价格 库存 购买数量
100mg
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

H-Phe-Phe-OH (Phenylalanyl-phenylalanine, Phe-Phe, L-Phe-L-Phe) is a short peptide diphenylalanine with utility for potential applications in biomaterial chemistry, sensors and bioelectronics.

[1] Dhrubajyoti Datta, et al. Nanoscale. 2018 Feb 15;10(7):3212-3224.

Chemical Properties

Cas No. 2577-40-4 SDF
别名 L-苯丙氨酸-L-苯丙氨酸
Canonical SMILES O=C(O)[C@H](CC1=CC=CC=C1)NC([C@H](CC2=CC=CC=C2)N)=O
分子式 C18H20N2O3 分子量 312.36
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.2014 mL 16.0072 mL 32.0143 mL
5 mM 0.6403 mL 3.2014 mL 6.4029 mL
10 mM 0.3201 mL 1.6007 mL 3.2014 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines

During the last two decades, the molecular self-assembly of the short peptide diphenylalanine (Phe-Phe) motif has attracted increasing focus due to its unique morphological structure and utility for potential applications in biomaterial chemistry, sensors and bioelectronics. Due to the ease of their synthetic modifications and a plethora of available experimental tools, the self-assembly of free and protected diphenylalanine scaffolds (H-Phe-Phe-OH, Boc-Phe-Phe-OH and Boc-Phe-Phe-OMe) has unfurled interesting tubular, vesicular or fibrillar morphologies. Developing on this theme, here we attempt to examine the effect of structure and properties (hydrophobic and H-bonding) modifying the functional C-terminus conjugated substituents on Boc-Phe-Phe on its self-assembly process. The consequent self-sorting due to H-bonding, van der Waals force and π-π interactions, generates monodisperse nano-vesicles from these peptides characterized via their SEM, HRTEM, AFM pictures and DLS experiments. The stability of these vesicles to different external stimuli such as pH and temperature, encapsulation of fluorescent probes inside the vesicles and their release by external trigger are reported. The results point to a new direction in the study and applications of the Phe-Phe motif to rationally engineer new functional nano-architectures.

Peptide-Based Molecularly Imprinted Polymer: A Visual and Digital Platform for Specific Recognition and Detection of Ethyl Carbamate

A visual and digital platform was constructed by peptide-based molecularly imprinted polymers (PMIPs) for specific recognition and detection of ethyl carbamate (EC). Here, the optosensing core was creatively constructed by the covalent assembly of dipeptides (H-Phe-Phe-OH) and genipin biomolecules for high fluorescence quantum yield and dual-signal response capability. MIPs were wrapped in the shell of the optosensing core for selectivity of EC from actual samples of alcoholic beverages. The genipin-FF nanoparticles (GFPNs)@PMIPs exhibited dual-band red-blue fluorescence image with a low detection limit of 0.817 and 1.65 μg L-1, respectively, in the optimal linear range of 2-240 μg L-1. The accuracy of this method was verified by the spiked recovery experiment, and a good recovery from 83.97 to 106.75% of the proposed optosensing method was obtained. In addition, a smartphone application was coupled with GFPNs@PMIPs to realize online real-time detection of EC. With the addition of EC, the color change of G and B values was negligible compared with the R value. This work also provides a potential method for on-site visual detection of analytes.