Home>>Signaling Pathways>> Chromatin/Epigenetics>> Epigenetic Reader Domain>>GSK8814

GSK8814 Sale

目录号 : GC60184

GSK8814 是一种高效、选择性的 ATAD2/2B 溴代苯胺化学探针和抑制剂,结合常数pKd=8.1,在 BROMOscan 中的 pKi=8.9。GSK8814 分别以 7.3 和 4.6 的 pIC50 与 ATAD2 和 BRD4 BD1 结合。GSK8814 对 ATAD2 的选择性是 BRD4 BD1 的 500 倍。

GSK8814 Chemical Structure

Cas No.:1997369-78-4

规格 价格 库存 购买数量
5mg
¥4,230.00
现货
10mg
¥7,200.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GSK8814 is a potent, selective, and ATAD2/2B bromodomain chemical probe and inhibitor, with a binding constant pKd=8.1 and a pKi=8.9 in BROMOscan. GSK8814 binds to ATAD2 and BRD4 BD1 with pIC50s of 7.3 and 4.6, respectively. GSK8814 shows 500-fold selectivity for ATAD2 over BRD4 BD1[1].

[1]. Bamborough P, et al. A Chemical Probe for the ATAD2 Bromodomain. Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11382-6. [2]. Bamborough P, et al. Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. J Med Chem. 2018 Sep 27;61(18):8321-8336.

Chemical Properties

Cas No. 1997369-78-4 SDF
Canonical SMILES O=C1NC2=C(N[C@H]3[C@H](OCC4CCC(F)(F)CC4)CNC[C@@H]3OC)N=CC(C5=CC(C)=CN=C5)=C2C=C1C
分子式 C28H35F2N5O3 分子量 527.61
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8953 mL 9.4767 mL 18.9534 mL
5 mM 0.3791 mL 1.8953 mL 3.7907 mL
10 mM 0.1895 mL 0.9477 mL 1.8953 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target

Theranostics 2023 Jan 1;13(2):787-809.PMID:36632213DOI:10.7150/thno.78840.

ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.

Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors

J Med Chem 2018 Sep 27;61(18):8321-8336.PMID:30226378DOI:10.1021/acs.jmedchem.8b00862.

ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of its class. In our recent disclosure of the first chemical probe against this bromodomain, GSK8814 (6), we described the use of a conformationally constrained methoxy piperidine to gain selectivity over the BET bromodomains. Here we describe an orthogonal conformational restriction strategy of the piperidine ring to give potent and selective tropane inhibitors and show structural insights into why this was more challenging than expected. Greater understanding of why different rational approaches succeeded or failed should help in the future design of selectivity in the bromodomain family.