Home>>Signaling Pathways>> PI3K/Akt/mTOR Signaling>> Akt>>GSK2110183

GSK2110183 Sale

目录号 : GC33135

Afuresertib (GSK2110183) is a potent, orally bioavailable Akt inhibitor with Ki of 0.08 nM, 2 nM, and 2.6 nM for Akt1, Akt2, and Akt3, respectively. Phase 2.

GSK2110183 Chemical Structure

Cas No.:1047634-63-8

规格 价格 库存 购买数量
2mg
¥2,082.00
现货
5mg
¥3,124.00
现货
10mg
¥4,463.00
现货
50mg
¥13,388.00
现货
100mg
¥18,743.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Afuresertib (GSK2110183) is a potent, orally bioavailable Akt inhibitor with Ki of 0.08 nM, 2 nM, and 2.6 nM for Akt1, Akt2, and Akt3, respectively. Phase 2.

Afuresertib inhibits the kinase activity of the E17K AKT1 mutant protein with EC50 of 0.2 nM. Afuresertib shows a concentration-dependent effect on multiple AKT substrate phosphorylation levels, including GSK3b, PRAS40, FOXO and Caspase 9. Overall 65% of the hematological cell lines are sensitive to afuresertib (EC50 < 1 μM). Among tested solid tumor cell lines, 21% have EC50 < 1 μM in response to afuresertib.[1]

Mice bearing BT474 breast tumor xenografts are dosed with afuresertib (p.o.) at 10, 30 or 100 mg/kg daily which results in 8, 37 and 61% TGI, respectively. Mice bearing SKOV3 ovarian tumor xenografts are treated with 10, 30 and 100 mg/kg afuresertib which results in 23, 37 and 97% TGI, respectively.[1]

[1] Dumble M, et al. PLoS One, 2014, 9(6):e100880.

Chemical Properties

Cas No. 1047634-63-8 SDF
Canonical SMILES O=C(C1=CC(C2=C(Cl)C=NN2C)=C(Cl)S1)N[C@@H](CC3=CC=C(F)C(F)=C3)CN
分子式 C18H16Cl2F2N4OS 分子量 445.31
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.2456 mL 11.2281 mL 22.4563 mL
5 mM 0.4491 mL 2.2456 mL 4.4913 mL
10 mM 0.2246 mL 1.1228 mL 2.2456 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Akt Pathway Inhibitors

Curr Top Med Chem 2020;20(10):883-900.PMID:32091335DOI:10.2174/1568026620666200224101808.

Cancer is a devastating disease that has plagued humans from ancient times to this day. After decades of slow research progress, promising drug development, and the identification of new targets, the war on cancer was launched, in 1972. The P13K/Akt pathway is a growth-regulating cellular signaling pathway, which in many human cancers is over-activated. Studies have demonstrated that a decrease in Akt activity by Akt inhibitors is associated with a reduction in tumor cell proliferation. There have been several promising drug candidates that have been studied, including but not limited to ipatasertib (RG7440), 1; afuresertib (GSK2110183), 2; uprosertib (GSK2141795), 3; capivasertib (AZD5363), 4; which reportedly bind to the ATP active site and inhibit Akt activity, thus exerting cytotoxic and antiproliferative activities against human cancer cells. For most of the compounds discussed in this review, data from preclinical studies in various cancers suggest a mechanistic basis involving hyperactivated Akt signaling. Allosteric inhibitors are also known to alter the activity of kinases. Perifosine (KRX- 0401), 5, an alkylphospholipid, is known as the first allosteric Akt inhibitor to enter clinical development and is mechanistically characterized as a PH-domain dependent inhibitor, non-competitive with ATP. This results in a reduction in Akt enzymatic and cellular activities. Other small molecule (MK- 2206, 6, PHT-427, Akti-1/2) inhibitors with a similar mechanism of action, alter Akt activity through the suppression of cell growth mediated by the inhibition of Akt membrane localization and subsequent activation. The natural product solenopsin has been identified as an inhibitor of Akt. A few promising solenopsin derivatives have emerged through pharmacophore modeling, energy-based calculations, and property predictions.

Ceritinib increases sensitivity of AKT inhibitors to gastric cancer

Eur J Pharmacol 2021 Apr 5;896:173879.PMID:33515539DOI:10.1016/j.ejphar.2021.173879.

Gastric cancer (GC), known for high morbidity and mortality, is poorly prognosed with traditional chemotherapy and biological agents. Current studies have found that over-activation of AKT is a common molecular characteristic in GC. Although the development of this targeted inhibitor has entered clinical phases, limited success is reported because of its compensatory signaling pathways. Here, we found that GC cell lines with high phosphorylation of AKT show different sensitivity to AKT inhibitors (AKTis), but a reduction of p-GSK3β related sensitivity of AKTis in GC cells. Besides, we revealed that Ceritinib exerted a strongly synergistic antitumor effect with AKT inhibitors both in vitro and in vivo. Obviously, Ceritinib improved the sensitivity of Capivasertib (AZD5363, AKTs) and Afuresertib (GSK2110183, AKTis) in gastric cancer cells, as illustrated by a significant reduction in the GC cell proliferation and enhanced apoptosis. The drug combination showed tumor regression in BALB/c (nu/nu) mouse MKN45 (Gastric cancer), tumor model. Also, the combination strategy indicated significantly low p-AKT levels due to AKTis compensation and reduced the levels of p-GSK3β in both GC cell lines and GC patient-derived cells. These findings may provide a novel combination strategy for gastric cancer treatment.

The PI3K/mTOR dual inhibitor GSK458 potently impedes ovarian cancer tumorigenesis and metastasis

Cell Oncol (Dordr) 2020 Aug;43(4):669-680.PMID:32382996DOI:10.1007/s13402-020-00514-8.

Purpose: The PI3K/AKT/mTOR pathway is one of the most highly activated cellular signaling pathways in advanced ovarian cancer. Although several PI3K/AKT/mTOR inhibitors have been developed to treat various types of cancer, the antitumor efficacy of many of these compounds against ovarian cancer has remained unclear. Methods: Here, we tested and compared a panel of 16 PI3K/AKT/mTOR inhibitors (XL765, Miltefosine, Rapamycin, CCI-779, RAD001, FK506, XL147, GSK2110183, IPI-145, GSK2141795, BYL719, GSK458, CAL-101, XL765 analogue SAR245409, Triciribine, and GDC0941) that have entered clinical trials for antitumor activity against ovarian cancer, as well as the front line drug, paclitaxel. Antitumor efficacy was measured in both ovarian cancer cell lines and patient-derived ovarian primary tumor cell lines in vitro and in vivo. Results: We identified the PI3K/mTOR dual inhibitor GSK458 as a potent inhibitor of proliferation in all cell lines tested at half maximal inhibitory concentrations (IC50) of approximately 0.01-1 µM, a range tens to hundreds fold lower than that of the other PI3K/AKT/mTOR inhibitors tested. Additionally, GSK458 showed the highest inhibitory efficacy against ovarian cancer cell migration. GSK458 also inhibited tumor growth and metastasis in nude mice intraperitoneally engrafted with SKOV3 cells or a patient-derived tumor cell xenograft (PDCX). Importantly, the inhibitory efficiency of GSK458 on cell proliferation and migration both in vitro and in vivo was comparable to that of paclitaxel. Mechanistically, the anti-tumor activity of GSK458 was found to be associated with inactivation of AKT and mTOR, and induction of cell cycle arrest at the G0/G1 phase. Conclusions: Based on our results, we conclude that GSK458 may serve as an attractive candidate to treat ovarian cancer.

Chemical Phosphoproteomics Sheds New Light on the Targets and Modes of Action of AKT Inhibitors

ACS Chem Biol 2021 Apr 16;16(4):631-641.PMID:33755436DOI:10.1021/acschembio.0c00872.

Due to its important roles in oncogenic signaling, AKT has been subjected to extensive drug discovery efforts leading to small molecule inhibitors investigated in advanced clinical trials. To better understand how these drugs exert their therapeutic effects at the molecular level, we combined chemoproteomic target affinity profiling using kinobeads and phosphoproteomics to analyze the five clinical AKT inhibitors AZD5363 (Capivasertib), GSK2110183 (Afuresertib), GSK690693, Ipatasertib, and MK-2206 in BT-474 breast cancer cells. Kinobead profiling identified between four and 29 nM targets for these compounds and showed that AKT1 and AKT2 were the only common targets. Similarly, measuring the response of the phosphoproteome to the same inhibitors identified ∼1700 regulated phosphorylation sites, 276 of which were perturbed by all five compounds. This analysis expanded the known AKT signaling network by 119 phosphoproteins that may represent direct or indirect targets of AKT. Within this new network, 41 regulated phosphorylation sites harbor the AKT substrate motif, and recombinant kinase assays validated 16 as novel AKT substrates. These included CEP170 and FAM83H, suggesting a regulatory function of AKT in mitosis and cytoskeleton organization. In addition, a specific phosphorylation pattern on the ULK1-FIP200-ATG13-VAPB complex was found to determine the active state of ULK1, leading to elevated autophagy in response to AKT inhibition.

Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor

PLoS One 2014 Jun 30;9(6):e100880.PMID:24978597DOI:10.1371/journal.pone.0100880.

Tumor cells upregulate many cell signaling pathways, with AKT being one of the key kinases to be activated in a variety of malignancies. GSK2110183 and GSK2141795 are orally bioavailable, potent inhibitors of the AKT kinases that have progressed to human clinical studies. Both compounds are selective, ATP-competitive inhibitors of AKT 1, 2 and 3. Cells treated with either compound show decreased phosphorylation of several substrates downstream of AKT. Both compounds have desirable pharmaceutical properties and daily oral dosing results in a sustained inhibition of AKT activity as well as inhibition of tumor growth in several mouse tumor models of various histologic origins. Improved kinase selectivity was associated with reduced effects on glucose homeostasis as compared to previously reported ATP-competitive AKT kinase inhibitors. In a diverse cell line proliferation screen, AKT inhibitors showed increased potency in cell lines with an activated AKT pathway (via PI3K/PTEN mutation or loss) while cell lines with activating mutations in the MAPK pathway (KRAS/BRAF) were less sensitive to AKT inhibition. Further investigation in mouse models of KRAS driven pancreatic cancer confirmed that combining the AKT inhibitor, GSK2141795 with a MEK inhibitor (GSK2110212; trametinib) resulted in an enhanced anti-tumor effect accompanied with greater reduction in phospho-S6 levels. Taken together these results support clinical evaluation of the AKT inhibitors in cancer, especially in combination with MEK inhibitor.