Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> TRP Channel>>GSK1702934A

GSK1702934A Sale

目录号 : GC39198

A TRPC3 and TRPC6 activator

GSK1702934A Chemical Structure

Cas No.:924377-85-5

规格 价格 库存 购买数量
5mg
¥810.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GSK1702934A is an activator of transient receptor potential canonical 3 (TRPC3) and TRPC6.1 It induces TRPC3- and TRPC6-dependent currents in whole-cell patch-clamp assays using HEK293 cells expressing the human channels (EC50s = 0.08 and 0.44 ?M, respectively). GSK1702934A enhances contractility and induces arrhythmias in hearts isolated from TRPC3-overexpressing, but not wild-type, mice.2

1.Xu, X., Lozinskaya, I., Costell, M., et al.Characterization of small molecule TRPC3 and TRPC6 agonist and antagonistsBiophys. J.104(2)454A(2013) 2.Doleschal, B., Primessnig, U., W?lkart, G., et al.TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1Cardiovasc. Res.106(1)163-173(2015)

Chemical Properties

Cas No. 924377-85-5 SDF
Canonical SMILES O=C1NC2=CC=CC=C2N1C3CCN(C(C4=CC(CCCCC5)=C5S4)=O)CC3
分子式 C22H25N3O2S 分子量 395.52
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5283 mL 12.6416 mL 25.2832 mL
5 mM 0.5057 mL 2.5283 mL 5.0566 mL
10 mM 0.2528 mL 1.2642 mL 2.5283 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

GSK1702934A and M085 directly activate TRPC6 via a mechanism of stimulating the extracellular cavity formed by the pore helix and transmembrane helix S6

J Biol Chem 2021 Oct;297(4):101125.PMID:34461094DOI:10.1016/j.jbc.2021.101125.

Transient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca2+i) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated. Here, we suggest that two distinct small molecules, M085 and GSK1702934A, directly activate TRPC6, both through a mechanism of stimulation of extracellular sites formed by the pore helix (PH) and transmembrane (TM) helix S6. In silico docking scanning of TRPC6 identified three extracellular sites that can bind small molecules, of which only mutations on residues of PH and S6 helix significantly reduced the apparent affinity of M085 and GSK1702934A and attenuated the maximal response of TRPC6 to these two chemicals by altering channel gating of TRPC6. Combing metadynamics, molecular dynamics simulations, and mutagenesis, we revealed that W679, E671, E672, and K675 in the PH and N701 and Y704 in the S6 helix constitute an orthosteric site for the recognition of these two agonists. The importance of this site was further confirmed by covalent modification of amino acid residing at the interface of the PH and S6 helix. Given that three structurally distinct agonists M085, GSK1702934A, and AM-0883, act at this site, as well as the occupancy of lipid molecules at this position found in other TRP subfamilies, it is suggested that the cavity formed by the PH and S6 has an important role in the regulation of TRP channel function by extracellular signals.

TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1

Cardiovasc Res 2015 Apr 1;106(1):163-73.PMID:25631581DOI:10.1093/cvr/cvv022.

Aim: TRPC3 is a non-selective cation channel, which forms a Ca2+ entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. Methods and results: We used a murine model of cardiac TRPC3 overexpression and a novel TRPC3 agonist, GSK1702934A, to uncover (patho)physiological functions of TRPC3. GSK1702934A induced a transient, non-selective conductance and prolonged action potentials in TRPC3-overexpressing myocytes but lacked significant electrophysiological effects in wild-type myocytes. GSK1702934A transiently enhanced contractility and evoked arrhythmias in isolated Langendorff hearts from TRPC3-overexpressing but not wild-type mice. Interestingly, pro-arrhythmic effects outlasted TRPC3 current activation, were prevented by enhanced intracellular Ca2+ buffering, and suppressed by the NCX inhibitor 3',4'-dichlorobenzamil hydrochloride. GSK1702934A substantially promoted NCX currents in TRPC3-overexpressing myocytes. The TRPC3-dependent electrophysiologic, pro-arrhythmic, and inotropic actions of GSK1702934A were mimicked by angiotensin II (AngII). Immunocytochemistry demonstrated colocalization of TRPC3 with NCX1 and disruption of local interaction upon channel activation by either GSK1702934A or AngII. Conclusion: Cardiac TRPC3 mediates Ca2+ and Na+ entry in proximity of NCX1, thereby elevating cellular Ca2+ levels and contractility. Excessive activation of TRPC3 is associated with transient cellular Ca2+ overload, spatial uncoupling between TRPC3 and NCX1, and arrhythmogenesis. We propose TRPC3-NCX micro/nanodomain communication as determinant of cardiac contractility and susceptibility to arrhythmogenic stimuli.

Lipid-independent control of endothelial and neuronal TRPC3 channels by light

Chem Sci 2019 Jan 15;10(9):2837-2842.PMID:30997005DOI:10.1039/c8sc05536j.

Lipid-gated TRPC channels are highly expressed in cardiovascular and neuronal tissues. Exerting precise pharmacological control over their activity in native cells is expected to serve as a basis for the development of novel therapies. Here we report on a new photopharmacological tool that enables manipulation of TRPC3 channels by light, in a manner independent of lipid metabolism and with higher temporal precision than lipid photopharmacology. Using the azobenzene photoswitch moiety, we modified GSK1702934A to generate light-controlled TRPC agonists. We obtained one light-sensitive molecule (OptoBI-1) that allows us to exert efficient, light-mediated control over TRPC3 activity and the associated cellular Ca2+ signaling. OptoBI-1 enabled high-precision, temporal control of TRPC3-linked cell functions such as neuronal firing and endothelial Ca2+ transients. With these findings, we introduce a novel photopharmacological strategy to control native TRPC conductances.

TRPC3 Regulates Islet Beta-Cell Insulin Secretion

Adv Sci (Weinh) 2023 Feb;10(6):e2204846.PMID:36642838DOI:10.1002/advs.202204846.

Insulin release is tightly controlled by glucose-stimulated calcium (GSCa) through hitherto equivocal pathways. This study investigates TRPC3, a non-selective cation channel, as a critical regulator of insulin secretion and glucose control. TRPC3's involvement in glucose-stimulated insulin secretion (GSIS) is studied in human and animal islets. TRPC3-dependent in vivo insulin secretion is investigated using pharmacological tools and Trpc3-/- mice. TRPC3's involvement in islet glucose uptake and GSCa is explored using fluorescent glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose and calcium imaging. TRPC3 modulation by a small-molecule activator, GSK1702934A, is evaluated in type 2 diabetic mice. TRPC3 is functionally expressed in human and mouse islet beta cells. TRPC3-controlled insulin secretion is KATP -independent and primarily mediated by diacylglycerol channel regulation of the cytosolic calcium oscillations following glucose stimulation. Conversely, glucose uptake in islets is independent of TRPC3. TRPC3 pharmacologic inhibition and knockout in mice lead to defective insulin secretion and glucose intolerance. Subsequently, TRPC3 activation through targeted small-molecule enhances insulin secretion and alleviates diabetes hallmarks in animals. This study imputes a function for TRPC3 at the onset of GSIS. These insights strengthen one's knowledge of insulin secretion physiology and set forth the TRPC3 channel as an appealing candidate for drug development in the treatment of diabetes.

A single point mutation in the TRPC3 lipid-recognition window generates supersensitivity to benzimidazole channel activators

Cell Calcium 2019 May;79:27-34.PMID:30798155DOI:10.1016/j.ceca.2019.02.007.

Mutation of a single residue within the recently identified lipid (diacylglycerol) recognition window of TRPC3 (G652A) was found to abolish channel activation via endogenous lipid mediators while retaining sensitivity to the non-lipid activator GSK1702934A (abb. GSK). The mechanism of this change in chemical sensing by TRPC3 was analysed by whole-cell and single channel electrophysiology as well as Ca2+ imaging. Currents initiated by GSK or the structural (benzimidazole) analog BI-2 were significantly larger in cells expressing the G652A mutant as compared to wild type (WT) channels. Whole cell patch-clamp experiments revealed that enhanced sensitivity to benzimidazoles was not due to augmented potency but reflected enhanced efficacy of benzimidazoles. Single channel analysis demonstrated that neither unitary conductance nor I-V characteristics were altered by the G652A mutation, precluding altered pore architecture as the basis of enhanced efficacy. These experiments uncovered a distinct gating pattern of BI-2-activated G652A mutant channels, featuring a unique, long-lived open state. Moreover, G652A mutant channels lacked PLC/diacylglycerol mediated cross-desensitization for GSK activation as typically observed for TRPC3. Lack of desensitization in G652A channels enabled large GSK/BI-2-induced Ca2+ signals in conditions that fully desensitized TRPC3 WT channels. We demonstrate that the lipid-recognition window of TRPC3 determines both sensitivity to lipid mediators and chemical gating by benzimidazoles. TRPC3 mutations within this lipid interaction site are suggested as a basis for chemogenetic targeting of TRPC3-signaling.