Home>>Signaling Pathways>> Neuroscience>> 5-HT Receptor>>Geissoschizine methyl ether

Geissoschizine methyl ether Sale

(Synonyms: 缝籽木嗪甲醚) 目录号 : GC38529

Geissoschizine methyl ether,一种 Uncaria hook 发现的生物碱类化合物,也是具有精神药物作用的 Yokukansan 的主要活性成分。Geissoschizine methyl ether 是有效的 5-HT1A 受体的激动剂。

Geissoschizine methyl ether Chemical Structure

Cas No.:60314-89-8

规格 价格 库存 购买数量
1mg
¥1,539.00
现货
5mg
¥4,626.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Geissoschizine methyl ether, a major indole alkaloid found in Uncaria hook, is a major active component of Yokukansan with psychotropic effects. Geissoschizine methyl ether is potent 5-HT1A receptor agonist[1][2].

[1]. Matsumoto T, et al. In vitro identification of human cytochrome P450 isoforms involved in the metabolism of Geissoschizine methyl ether, an active component of the traditional Japanese medicine Yokukansan. Xenobiotica. 2016;46(4):325-34. [2]. Nishi A, et al. Geissoschizine methyl ether, an alkaloid in Uncaria hook, is a potent serotonin ?A receptor agonist and candidate for amelioration of aggressiveness and sociality by yokukansan. Neuroscience. 2012 Apr 5;207:124-36.

Chemical Properties

Cas No. 60314-89-8 SDF
别名 缝籽木嗪甲醚
Canonical SMILES COC(/C([C@H]1C[C@@]2([H])C3=C(CCN2C/C1=C/C)C4=CC=CC=C4N3)=C\OC)=O
分子式 C22H26N2O3 分子量 366.45
溶解度 Soluble in DMSO 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7289 mL 13.6444 mL 27.2889 mL
5 mM 0.5458 mL 2.7289 mL 5.4578 mL
10 mM 0.2729 mL 1.3644 mL 2.7289 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Serotonin Receptor Binding Characteristics of Geissoschizine methyl ether, an Indole Alkaloid in Uncaria Hook

Curr Med Chem 2018;25(9):1036-1045.PMID:28322152DOI:10.2174/0929867324666170320114713.

Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symptoms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor subtypes in the brains using our own data and previous findings. Method: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5- HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was metabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5- HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cortex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates various serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS.

Antiepileptic Geissoschizine methyl ether is an inhibitor of multiple neuronal channels

Acta Pharmacol Sin 2020 May;41(5):629-637.PMID:31911638DOI:10.1038/s41401-019-0327-4.

Geissoschizine methyl ether (GM) is an indole alkaloid isolated from Uncaria rhynchophyll (UR) that has been used for the treatment of epilepsy in traditional Chinese medicine. An early study in a glutamate-induced mouse seizure model demonstrated that GM was one of the active ingredients of UR. In this study, electrophysiological technique was used to explore the mechanism underlying the antiepileptic activity of GM. We first showed that GM (1-30 μmol/L) dose-dependently suppressed the spontaneous firing and prolonged the action potential duration in cultured mouse and rat hippocampal neurons. Given the pivotal roles of ion channels in regulating neuronal excitability, we then examined the effects of GM on both voltage-gated and ligand-gated channels in rat hippocampal neurons. We found that GM is an inhibitor of multiple neuronal channels: GM potently inhibited the voltage-gated sodium (NaV), calcium (CaV), and delayed rectifier potassium (IK) currents, and the ligand-gated nicotinic acetylcholine (nACh) currents with IC50 values in the range of 1.3-13.3 μmol/L. In contrast, GM had little effect on the voltage-gated transient outward potassium currents (IA) and four types of ligand-gated channels (γ-amino butyric acid (GABA), N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainite (AMPA/KA receptors)). The in vivo antiepileptic activity of GM was validated in two electricity-induced seizure models. In the maximal electroshock (MES)-induced mouse seizure model, oral administration of GM (50-100 mg/kg) dose-dependently suppressed generalized tonic-clonic seizures. In 6-Hz-induced mouse seizure model, oral administration of GM (100 mg/kg) reduced treatment-resistant seizures. Thus, we conclude that GM is a promising antiepileptic candidate that inhibits multiple neuronal channels.

Geissoschizine methyl ether, a corynanthean-type indole alkaloid from Uncaria rhynchophylla as a potential acetylcholinesterase inhibitor

Nat Prod Res 2012;26(1):22-8.PMID:21714741DOI:10.1080/14786419.2010.529811.

Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.

Geissoschizine methyl ether N-oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla

Nat Prod Res 2015;29(9):842-7.PMID:25496282DOI:10.1080/14786419.2014.989847.

Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC₅₀ value of 23.4 μM.

Geissoschizine methyl ether, an indole alkaloid extracted from Uncariae Ramulus et Uncus, is a potent vasorelaxant of isolated rat aorta

Eur J Pharmacol 2002 May 31;444(3):183-9.PMID:12063078DOI:10.1016/s0014-2999(02)01623-0.

Effects of Geissoschizine methyl ether, an indole alkaloid isolated from the hook of Uncariae Ramulus et Uncus, on vascular responses were examined using isolated strips of rat aorta. Geissoschizine methyl ether (10(-7)-10(-4) M) relaxed norepinephrine (5x10(-8) M)-induced contraction in a dose-dependent manner. The potency (50% efficacy concentration, EC(50)=0.744 microM) was approximately 14 times greater than that (EC(50)=10.6 microM) of hirsutine, one of the indole alkaloids isolated from Uncariae Ramulus et Uncus that demonstrates a vasorelaxant effect by Ca(2+)-channel blocking. The vasorelaxant effect of Geissoschizine methyl ether found at the lower concentrations (10(-7)-3x10(-6) M) on the norepinephrine-induced contraction was abolished by pretreatment with N(G)-nitro-L-arginine (10(-4) M), an inhibitor of nitric oxide synthesis, or by denuding aortas of endothelium, while the effects at the higher concentrations (10(-5)-10(-4) M) were not completely prevented by either N(G)-nitro-L-arginine and deendothelialization. Furthermore, Geissoschizine methyl ether did not relax high K(+)-, Ca(2+)- and a Ca(2+)-channel agonist Bay K8644-induced contractions at the lower concentrations that markedly relaxed the norepinephrine-induced contractions, while the higher concentrations of Geissoschizine methyl ether relaxed the high K(+)-, Ca(2+)- and Bay K8644-induced contractions. These results suggest that the vasorelaxant effect of Geissoschizine methyl ether is composed of two different mechanisms: endothelial dependency with nitric oxide and endothelial independency with voltage-dependent Ca(2+)-channel blocking.