Home>>Signaling Pathways>> Tyrosine Kinase>> VEGFR>>GW806742X

GW806742X Sale

目录号 : GC36203

GW806742X 是一种混合谱系激酶结构域样蛋白 (MLKL) 抑制剂,结合 MLKL 假激酶域的 Kd 值为 9.3 μM,并具有抗坏死活性。GW806742X 也具有抗 VEGFR2 的活性。

GW806742X Chemical Structure

Cas No.:579515-63-2

规格 价格 库存 购买数量
5 mg
¥540.00
现货
10 mg
¥720.00
现货
25 mg
¥1,350.00
现货
50 mg
¥2,250.00
现货
100 mg
¥4,050.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GW806742X is a Mixed Lineage Kinase Domain-Like protein (MLKL) inhibitor which binds the MLKL pseudokinase domain with a Kd value of 9.3 μM and has anti-necroptosis activity. GW806742X has activity against VEGFR2[1][2]. Kd: 9.3 μM (MLKL)[1]

[1]. Hildebrand JM, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15072-7. [2]. Yan B, et al. Discovery of a new class of highly potent necroptosis inhibitors targeting the mixed lineagekinase domain-like protein. Chem Commun (Camb). 2017 Mar 28;53(26):3637-3640.

Chemical Properties

Cas No. 579515-63-2 SDF
Canonical SMILES O=S(C1=CC=CC(NC2=NC=CC(N(C)C3=CC=C(NC(NC4=CC=C(OC(F)(F)F)C=C4)=O)C=C3)=N2)=C1)(N)=O
分子式 C25H22F3N7O4S 分子量 573.55
溶解度 DMSO: ≥ 125 mg/mL (217.94 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7435 mL 8.7176 mL 17.4353 mL
5 mM 0.3487 mL 1.7435 mL 3.4871 mL
10 mM 0.1744 mL 0.8718 mL 1.7435 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways

Acta Pharmacol Sin 2022 May;43(5):1324-1336.PMID:PMC9061757DOI:10.1038/s41401-021-00749-7.

Monosodium urate (MSU) crystals, the etiological agent of gout, are formed in joints and periarticular tissues due to long-lasting hyperuricemia. Although MSU crystal-triggered NLRP3 inflammasome activation and interleukin 1β (IL-1β) release are known to have key roles in gouty arthritis, recent studies revealed that MSU crystal-induced necrosis also plays a critical role in this process. However, it remains unknown what forms of necrosis have been induced and whether combined cell death inhibitors can block such necrosis. Here, we showed that MSU crystal-induced necrosis in murine macrophages was not dependent on NLRP3 inflammasome activation, as neither genetic deletion nor pharmacological blockade of the NLRP3 pathway inhibited the necrosis. Although many cell death pathways (such as ferroptosis and pyroptosis) inhibitors or reactive oxygen species inhibitors did not have any suppressive effects, necroptosis pathway inhibitors GSK'872 (RIPK3 inhibitor), and GW806742X (MLKL inhibitor) dose-dependently inhibited MSU crystal-induced necrosis. Moreover, a triple combination of GSK'872, GW806742X, and IDN-6556 (pan-caspase inhibitor) displayed enhanced inhibition of the necrosis, which was further fortified by the addition of MCC950 (NLRP3 inhibitor), suggesting that multiple cell death pathways might have been triggered by MSU crystals. Baicalin, a previously identified inhibitor of NLRP3, inhibited MSU crystal-induced inflammasome activation and suppressed the necrosis in macrophages. Besides, baicalin gavage significantly ameliorated MSU crystal-induced peritonitis in mice. Altogether, our data indicate that MSU crystals induce NLRP3-independent necrosis, which can be inhibited by combined inhibitors for multiple signaling pathways, highlighting a new avenue for the treatment of gouty arthritis.

Targeting aurora kinases as a potential prognostic and therapeutical biomarkers in pediatric acute lymphoblastic leukaemia

Sci Rep 2020 Dec 4;10(1):21272.PMID:33277547DOI:10.1038/s41598-020-78024-8.

Aurora kinases (AURKA and AURKB) are mitotic kinases with an important role in the regulation of several mitotic events, and in hematological malignancies, AURKA and AURKB hyperexpression are found in patients with cytogenetic abnormalities presenting a unfavorable prognosis. The aim of this study was evaluated the mRNA expression profile of pediatric Acute Lymphoblastic Leukaemia (ALL) patients and the efficacy of two AURKA and AURKB designed inhibitors (GW809897X and GW806742X) in a leukemia cell line as a potential novel therapy for ALL patients. Cellular experiments demonstrated that both inhibitors induced cell death with caspase activation and cell cycle arrest, however only the GW806742X inhibitor decreased with more efficacy AURKA and AURKB expression in K-562 leukemia cells. In ALL patients both AURKA and AURKB showed a significant overexpression, when compared to health controls. Moreover, AURKB expression level was significant higher than AURKA in patients, and predicted a poorer prognosis with significantly lower survival rates. No differences were found in AURKA and AURKB expression between gene fusions, immunophenotypic groups, white blood cells count, gender or age. In summary, the results in this study indicates that the AURKA and AURKB overexpression are important findings in pediatric ALL, and designed inhibitor, GW806742X tested in vitro were able to effectively inhibit the gene expression of both aurora kinases and induce apoptosis in K-562 cells, however our data clearly shown that AURKB proves to be a singular finding and potential prognostic biomarker that may be used as a promising therapeutic target to those patients.

Pore-Forming Toxins Induce Macrophage Necroptosis during Acute Bacterial Pneumonia

PLoS Pathog 2015 Dec 11;11(12):e1005337.PMID:26659062DOI:10.1371/journal.ppat.1005337.

Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.

Necroptosis directly induces the release of full-length biologically active IL-33 in vitro and in an inflammatory disease model

FEBS J 2019 Feb;286(3):507-522.PMID:30576068DOI:10.1111/febs.14738.

Interleukin-33 (IL-33) is a pro-inflammatory cytokine that plays a significant role in inflammatory diseases by activating immune cells to induce type 2 immune responses upon its release. Although IL-33 is known to be released during tissue damage, its exact release mechanism is not yet fully understood. Previously, we have shown that cleaved IL-33 can be detected in the plasma and epithelium of Ripk1-/- neonates, which succumb to systemic inflammation driven by spontaneous receptor-interacting protein kinase-3 (RIPK3)-dependent necroptotic cell death, shortly after birth. Thus, we hypothesized that necroptosis, a RIPK3/mixed lineage kinase-like protein (MLKL)-dependent, caspase-independent cell death pathway controls IL-33 release. Here, we show that necroptosis directly induces the release of nuclear IL-33 in its full-length form. Unlike the necroptosis executioner protein, MLKL, which was released in its active phosphorylated form in extracellular vesicles, IL-33 was released directly into the supernatant. Importantly, full-length IL-33 released in response to necroptosis was found to be bioactive, as it was able to activate basophils and eosinophils. Finally, the human and murine necroptosis inhibitor, GW806742X, blocked necroptosis and IL-33 release in vitro and reduced eosinophilia in Aspergillus fumigatus extract-induced asthma in vivo, an allergic inflammation model that is highly dependent on IL-33. Collectively, these data establish for the first time, necroptosis as a direct mechanism for IL-33 release, a finding that may have major implications in type 2 immune responses.

Receptor-Interacting Protein Kinases 1 and 3, and Mixed Lineage Kinase Domain-Like Protein Are Activated by Sublytic Complement and Participate in Complement-Dependent Cytotoxicity

Front Immunol 2018 Feb 23;9:306.PMID:29527209DOI:10.3389/fimmu.2018.00306.

The complement system participates in the pathogenesis of many diseases. Complement activation produces several active protein complexes and peptides, including the terminal C5b-9 complexes. It was reported that C5b-9 complexes insert into the plasma membrane and cause membrane perturbation, intracellular calcium surge, metabolic depletion, and osmotic lysis. Previously, we showed that complement-dependent cytotoxicity (CDC) is regulated by JNK and Bid. Here, we demonstrate that three mediators in TNFα-induced necroptosis (regulated necrosis), the receptor-interacting protein kinases, receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL), are activated by complement and contribute to CDC. Cell treatment with necrostatin-1 (Nec-1), a RIPK1 inhibitor, GSK'872, a RIPK3 inhibitor, or necrosulfonamide and GW806742X, MLKL inhibitors, restrain CDC. These findings were confirmed by using specific siRNAs targeting the synthesis of these proteins. Mouse fibroblasts lacking RIPK3 or MLKL were found to be less sensitive to C5b-9 than were wild-type (WT) fibroblasts. Enhanced CDC was achieved by RIPK1 or RIPK3 overexpression but not by the overexpression of a RHIM-RIPK1 mutant nor by a kinase-dead RIPK3 mutant. Nec-1 reduces the CDC of WT but not of RIPK3-knockout fibroblasts. Cells treated with a sublytic dose of complement exhibit co-localization of RIPK3 with RIPK1 in the cytoplasm and co-localization of RIPK3 and MLKL with C5b-9 at the plasma membrane. Data supporting cooperation among the RIP kinases, MLKL, JNK, and Bid in CDC are presented. These results provide a deeper insight into the cell death process activated by complement and identify potential points of cross talk between complement and other inducers of inflammation and regulated necrosis.