Home>>Plant Biology>> Phytotoxins>>Radicinol

Radicinol Sale

目录号 : GC46211

A phytotoxic fungal metabolite

Radicinol Chemical Structure

Cas No.:65647-66-7

规格 价格 库存 购买数量
1mg
¥2,518.00
现货
5mg
¥11,340.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Radicinol is a phytotoxic fungal metabolite that has been found in A. chrysanthemi.1

|1. Robeson, D.J., Gray, G.R., and Strobel, G.A. Production of the phytotoxins radicinin and radicinol by Alternaria chrysanthemi. Phytochem. 21(9), 2359-2362 (1982).

Chemical Properties

Cas No. 65647-66-7 SDF
Canonical SMILES O=C1OC(/C=C/C)=CC2=C1[C@H](O)[C@@H](O)[C@H](C)O2
分子式 C12H14O5 分子量 238.2
溶解度 DMF: soluble,DMSO: soluble,Ethanol: soluble,Methanol: soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.1982 mL 20.9908 mL 41.9815 mL
5 mM 0.8396 mL 4.1982 mL 8.3963 mL
10 mM 0.4198 mL 2.0991 mL 4.1982 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Enzyme Inhibitory Radicinol Derivative from Endophytic fungus Bipolaris sorokiniana LK12, Associated with Rhazya stricta

Molecules 2015 Jul 3;20(7):12198-208.PMID:26151116DOI:10.3390/molecules200712198.

Endophytes, living inside plant tissues, play an essential role in plant growth and development, whilst producing unique bioactive secondary metabolites. In the current study, the endophytic fungus Bipolaris sorokiniana LK12 was isolated from the leaves of ethno-medicinal and alkaloidal rich Rhazya stricta. The bulk amount of ethyl acetate extract of fungus was subjected to advance column chromatographic techniques, which resulted in the isolation of a new Radicinol derivative, bipolarisenol (1). It was found to be a derivative of Radicinol. The structure elucidation was carried out by the combined use of 1D and 2D nuclear magnetic resonance, infrared spectroscopy, mass, and UV spectrometric analyses. The bipolarisenol was assessed for its potential role in enzyme inhibition of urease and acetyl cholinesterase (AChE). Results showed that bipolarisenol significantly inhibited the AChE activity with low IC50 (67.23 ± 5.12 µg·mL-1). Bipolarisenol inhibited urease in a dose-dependent manner with high IC50 (81.62 ± 4.61 µg·mL-1). The new compound also showed a moderate anti-lipid peroxidation potential (IC50 = 168.91 ± 4.23 µg·mL-1). In conclusion, endophytes isolated from medicinal plants possess a unique potential to be considered for future drug discovery.

Novel Radicinol derivatives from long-term cultures of alternaria chrysanthemi

J Nat Prod 1999 Nov;62(11):1568-9.PMID:10579876DOI:10.1021/np990154w.

Cultures of Alternaria chrysanthemi normally produce radicinin (1) and Radicinol (2) when cultured on Czapek-Dox medium or on potato dextrose broth. We have observed that long-term cultures of A. chrysanthemi grown on malt-extract broth produce 3-epiradicinol (3), the novel metabolites 3-methoxy-3-epiradicinol (4) and 9, 10-epoxy-3-methoxy-3-epiradicinol (5), and (2).

Antiproliferative activity of hamigerone and Radicinol isolated from Bipolaris papendorfii

Biomed Res Int 2014;2014:890904.PMID:25184147DOI:10.1155/2014/890904.

Secondary metabolites from fungi organisms have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Through high throughput screening (HTS) and bioassay-guided isolation, we isolated two bioactive compounds hamigerone (1) and Radicinol (2). These compounds were isolated from fungus Bipolaris papendorfii, isolated from the rice fields of Dera, Himachal Pradesh, India. The structures of the compounds were established on the basis of spectroscopic data, namely, NMR ((1)H, (13)C, mass, and UV). Both compounds were found to be antiproliferative against different cancer cells. Furthermore we have also noted that both compounds showed increase in apoptosis by favorably modulating both tumor suppressor protein (p53) and antiapoptic protein (BCL-2), and in turn increase caspase-3 expression in cancer cells. This is the first report of these compounds from fungus Bipolaris papendorfii and their anticancer activity.

Radicinols and radicinin phytotoxins produced by Alternaria radicina on carrots

J Agric Food Chem 2004 Jun 2;52(11):3655-60.PMID:15161245DOI:10.1021/jf035254t.

The phytotoxin epi-radicinol, a diastereomer of Radicinol, was isolated from large cultures of Alternaria radicina grown on carrot slices and identified by GC-MS, LC-MS, (1)H NMR, and (13)C NMR. Four strains of A. radicina isolated from rotted carrot produced epi-radicinol as the major metabolite (up to 39414 microg/g) together with Radicinol (up to 2423 microg/g), and, to a lesser extent, radicinin when cultured on carrot slices, whereas on rice they mainly produced radicinin (2486-53800 microg/g). Radicinin and epi-radicinol reduced root elongation of germinating carrot seeds at concentrations of 10-20 microg/mL. Carrot samples naturally infected by A. radicina contained detectable quantities of epi-radicinol also in combination with lower levels of radicinin or Radicinol. Accumulation of radicinols and radicinin in stored carrots, either naturally contaminated or artificially inoculated with A. radicina, was stimulated by successive temperature rises from 1 to 10 degrees C and from 10 to 20 degrees C, reaching maximum levels of 60 microg/g epi-radicinol and 26 microg/g radicinin. This is the first report on the production of radicinols by A. radicina and its natural occurrence in carrots in association with radicinin.

Phytotoxic Activity and Structure-Activity Relationships of Radicinin Derivatives against the Invasive Weed Buffelgrass ( Cenchrus ciliaris)

Molecules 2019 Jul 31;24(15):2793.PMID:31370299DOI:10.3390/molecules24152793.

Radicinin (1), is a fungal dihydropyranopyran-4,5-dione isolated together with some analogues, namely 3-epi-radicinin, Radicinol, 3-epi-radicinol, and cochliotoxin (2-5), from the culture filtrates of the fungus Cochliobolus australiensis, a foliar pathogen of buffelgrass (Cenchrus ciliaris), an invasive weed in North America. Among the different metabolites 1 showed target-specific activity against the host plant and no toxicity on zebrafish embryos, promoting its potential use to develop a natural bioherbicide formulation to manage buffelgrass. These data and the peculiar structural feature of 1 suggested to carry out a structure-activity relationship study, preparing some key hemisynthetic derivatives and to test their phytotoxicity. In particular, p-bromobenzoyl, 5-azidopentanoyl, stearoyl, mesyl and acetyl esters of radicinin were semisynthesized as well as the monoacetyl ester of 3-epi-radicinin, the diacetyl esters of Radicinol and its 3 epimer, and two hexa-hydro derivatives of radicinin. The spectroscopic characterization and the activity by leaf puncture bioassay against buffelgrass of all the derivatives is reported. Most of the compounds showed phytotoxicity but none of them had comparable or higher activity than radicinin. Thus, the presence of an α,β unsaturated carbonyl group at C-4, as well as, the presence of a free secondary hydroxyl group at C-3 and the stereochemistry of the same carbon proved to be the essential feature for activity.