Home>>Signaling Pathways>> GPCR/G protein>> Ras>>GGTI298

GGTI298 Sale

目录号 : GC36134

A geranylgeranyltransferase I inhibitor

GGTI298 Chemical Structure

Cas No.:180977-44-0

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,709.00
现货
1mg
¥810.00
现货
5mg
¥1,620.00
现货
10mg
¥2,520.00
现货
25mg
¥4,950.00
现货
50mg
¥6,750.00
现货
100mg 待询 待询
200mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

The given cells are lysed with Reporter Lysis Buffer and subjected to luciferase activity assay using Luciferase Assay System in a luminometer. Relative luciferase activity is normalized to protein content.

Cell experiment:

Cells are seeded in 96-well cell culture plates and treated the next day with the agents indicated. The viable cell number is determined using the sulforhodamine B assay.

Animal experiment:

The ileal loop experiment is performed in 6-8-week-old mice by a modified rabbit ileal loop assay. Following gut sterilization, the animals are kept fasted for 24 h prior to surgery and fed only water ad libitum. Anesthesia is induced by a mixture of ketamine (35 mg/kg of body weight) and xylazine (5 mg/kg of body weight). A laparotomy is performed, and the experimental loops of 5-cm length are constricted at the terminal ileum by tying with non-absorbable silk. The following fluids are instilled in each loop by means of a tuberculin syringe fitted with a disposable needle through the ligated end of the loop as the ligatured is tightened: pure CT (1 μg; positive control), saline (negative control), CT (1 μg) + TRAM-34 (different concentrations in μM as indicated in Fig. 7), CT (1 μg) + H1152 (1 μM), and CT (1 μg) + GGTI298 (different concentrations in μM), a specific inhibitor of Rap1A. The intestine is returned to the peritoneum, and the mice are sutured and returned to their cages. After 6 h, these animals are sacrificed by cervical dislocation, and the loops are excised. The fluid from each loop is collected, and the ratio of the amount of fluid contained in the loop with respect to the length of the loop (fluid accumulation ratio in g/cm) is calculated as a reflection of the efficacy of various inhibitors.

References:

[1]. Sheikh IA, et al. The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea. J Biol Chem. 2013 Jul 12;288(28):20404-15
[2]. Chen S, et al. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer. 2010 Jan 29;9:23.
[3]. McGuire TF, et al. Platelet-derived growth factor receptor tyrosine phosphorylation requires protein geranylgeranylation but not farnesylation. J Biol Chem. 1996 Nov 1;271(44):27402-7.

产品描述

Post-translational protein prenylation, a process catalyzed by three different enzymes, occurs at the C-terminal of a number of proteins involved in cell growth control and oncogenesis. One of these enzymes, geranylgeranyltransferase I (GGTase I) modifies cysteines of proteins with CAAX terminal sequences, preferring either leucine or isoleucine in the X-position. The Rho family of proteins are typically geranylgeranylated by GGTase I.1 GGTI 298 is a CAAX peptidomimetic that selectively inhibits GGTase I with little effect on other prenylation enzymes such as farnesyltransferase.2 It has been shown to arrest human tumor cells (IC50 = 10 ?M for A549 cells) in G0/G1 and induce apoptosis by inhibiting proteasome activity and up-regulating the expression of the cyclin-dependent kinase inhibitor p21.2,3,4

1.Li, X., Liu, L., Tupper, J.C., et al.Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cellsJ. Biol. Chem.277(18)15309-15316(2002) 2.Miquel, K., Pradines, A., Sun, J., et al.GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cellsCancer Res.57(10)1846-1850(1997) 3.Efuet, E.T., and Keyomarsi, K.Farnesyl and geranylgeranyl transferase inhibitors induce G1 arrest by targeting the proteasomeCancer Res.66(2)1040-1051(2006) 4.Vogt, A., Sun, J., Qian, Y., et al.The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21WAF1/CIP1/SDI1 in a p53-independent mannerJ. Biol. Chem.272(43)27224-27229(1997)

Chemical Properties

Cas No. 180977-44-0 SDF
Canonical SMILES CC(C)C[C@@H](C(OC)=O)NC(C1=CC=C(NC[C@@H](N)CS)C=C1C2=C3C=CC=CC3=CC=C2)=O
分子式 C27H33N3O3S 分子量 479.63
溶解度 DMSO: 100 mg/mL (208.49 mM); Water: < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0849 mL 10.4247 mL 20.8494 mL
5 mM 0.417 mL 2.0849 mL 4.1699 mL
10 mM 0.2085 mL 1.0425 mL 2.0849 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

KLF2 (kruppel-like factor 2 [lung]) regulates osteoclastogenesis by modulating autophagy

Autophagy 2019 Dec;15(12):2063-2075.PMID:30894058DOI:10.1080/15548627.2019.1596491.

Macroautophagy/autophagy is involved in myeloid cellular repair, destruction, and osteoclast differentiation; conversely, KLF2 (kruppel-like factor 2 [lung]) regulates myeloid cell activation and differentiation. To investigate the specific role of KLF2 in autophagy, osteoclastic differentiation was induced in monocytes in presence or absence of the autophagy inhibitor 3-methyladenine (3-MA), KLF2 inducer geranylgeranyl transferase inhibitor (GGTI298), and adenoviral overexpression of KLF2. We found that the number of autophagic cells and multinucleated osteoclasts were significantly decreased in presence of 3-MA, GGTI298, and KLF2 overexpressed cells indicating involvement of KLF2 in these processes. In addition, autophagy-related protein molecules were significantly decreased after induction of KLF2 during the course of osteoclastic differentiation. Furthermore, induction of arthritis in mice reduced the level of Klf2 in monocytes, and enhanced autophagy during osteoclastic differentiation. Mechanistically, knocking down of KLF2 increased the level of Beclin1 (BECN1) expression, and conversely, KLF2 over-expression reduced the level of BECN1 in monocytes. Moreover, 3-MA and GGTI298 both reduced myeloid cell proliferation concomitantly upregulating senescence-related molecules (CDKN1A/p21 and CDKN1B/p27kip1). We further confirmed epigenetic regulation of Becn1 by modulating Klf2; knocking down of Klf2 increased the levels of histone activation marks H3K9 and H4K8 acetylation in the promoter region of Becn1; and overexpression of Klf2 decreased the levels of H4K8 and H3K9 acetylation. In addition, osteoclastic differentiation also increased levels of H3K9 and H4K8 acetylation in the promoter region of Becn1. Together these findings for the first time revealed that Klf2 critically regulates Becn1-mediated autophagy process during osteoclastogenesis.Abbreviations: ACP5/TRAP: acid phosphatase 5, tartrate resistant; Ad-KLF2: adenoviral construct of KLF2; ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; BECN1: beclin 1, autophagy related; C57BL/6: inbred mouse strain C57 black 6; ChIP: chromatin immunoprecipitation; CSF1/MCSF: colony stimulating factor 1 (macrophage); CTSK: cathepsin K; EV: empty vector; GGTI298: geranylgeranyl transferase inhibitor; H3K9Ac: histone H3 lysine 9 acetylation; H4K8Ac: histone H4 lysine 8 acetylation; K/BxN mice: T cell receptor (TCR) transgene KRN and the MHC class II molecule A(g7) generates K/BxN mice; KLF2: kruppel-like factor 2 (lung); 3MA: 3-methyladenine; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MDC: monodansylcadaverine; NFATc1: nuclear factor of activated T cells 1; NFKB: nuclear factor of kappa light polypeptide gene enhancer in B cells; p21/CDKN1A: cyclin dependent kinase inhibitor 1A; p27kip1/CDKN1B: cyclin-dependent kinase inhibitor 1B; PCR: polymerase chain reaction; PtdIns3K: phosphoinositide 3-kinase; RA: rheumatoid arthritis; siKlf2: small interfering KLF2 ribonucleic acid; NS: non-specific; RAW 264.7: abelson murine leukemia virus transformed macrophage cell line; TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11; TSS: transcriptional start site; UCSC: University of California, Santa Cruz.

Suppressive Role of Bam32/DAPP1 in Chemokine-Induced Neutrophil Recruitment

Int J Mol Sci 2021 Feb 12;22(4):1825.PMID:33673180DOI:10.3390/ijms22041825.

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32-/- mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32-/- mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32-/- neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32-/- mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.

Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis

Mol Cancer 2010 Jan 29;9:23.PMID:20113484DOI:10.1186/1476-4598-9-23.

Background: Geranylgeranyltransferase I (GGTase I) has emerged as a cancer therapeutic target. Accordingly, small molecules that inhibit GGTase I have been developed and exhibit encouraging anticancer activity in preclinical studies. However, their underlying anticancer mechanisms remain unclear. Here we have demonstrated a novel mechanism by which GGTase I inhibition modulates apoptosis. Results: The GGTase I inhibitor GGTI-298 induced apoptosis and augmented tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. GGTI-298 induced DR4 and DR5 expression and reduced c-FLIP levels. Enforced c-FLIP expression or DR5 knockdown attenuated apoptosis induced by GGTI-298 and TRAIL combination. Surprisingly, DR4 knockdown sensitized cancer cells to GGTI298/TRAIL-induced apoptosis. The combination of GGTI-298 and TRAIL was more effective than each single agent in decreasing the levels of IkappaBalpha and p-Akt, implying that GGTI298/TRAIL activates NF-kappaB and inhibits Akt. Interestingly, knockdown of DR5, but not DR4, prevented GGTI298/TRAIL-induced IkappaBalpha and p-Akt reduction, suggesting that DR5 mediates reduction of IkappaBalpha and p-Akt induced by GGTI298/TRAIL. In contrast, DR4 knockdown further facilitated GGTI298/TRAIL-induced p-Akt reduction. Conclusions: Both DR5 induction and c-FLIP downregulation contribute to GGTI-298-mediated augmentation of TRAIL-induced apoptosis. Moreover, DR4 appears to play an opposite role to DR5 in regulation of GGTI/TRAIL-induced apoptotic signaling.

A central role for cAMP/EPAC/RAP/PI3K/AKT/CREB signaling in LH-induced follicular Pgr expression at medaka ovulation†

Biol Reprod 2021 Aug 3;105(2):413-426.PMID:33880506DOI:10.1093/biolre/ioab077.

Nuclear progestin receptor (PGR) is a ligand-activated transcription factor that has been identified as a pivotal mediator of many processes associated with ovarian and uterine function, and aberrant control of PGR activity causes infertility and disease including cancer. The essential role of PGR in vertebrate ovulation is well recognized, but the mechanisms by which PGR is rapidly and transiently induced in preovulatory follicles after the ovulatory LH surge are not known in lower vertebrates. To address this issue, we utilized the small freshwater teleost medaka Oryzias latipes, which serves as a good model system for studying vertebrate ovulation. In the in vitro ovulation system using preovulatory follicles dissected from the fish ovaries, we found that inhibitors of EPAC (brefeldin A), RAP (GGTI298), PI3K (Wortmannin), AKT (AKT inhibitor IV), and CREB (KG-501) inhibited LH-induced follicle ovulation, while the PKA inhibitor H-89 had no effect on follicle ovulation. The inhibitors capable of inhibiting follicle ovulation also inhibited follicular expression of Pgr and matrix metalloproteinase-15 (Mmp15), the latter of which was previously shown to not only be a downstream effector of Pgr but also a proteolytic enzyme indispensable for follicle rupture in medaka ovulation. Further detailed analysis revealed for the first time that the cAMP/EPAC/RAP/PI3K/AKT/CREB signaling pathway mediates the LH signal to induce Pgr expression in preovulatory follicles. Our data also showed that phosphorylated Creb1 is a transcription factor essential for pgr expression and that Creb1 phosphorylated by Akt1, rather than PKA, may be preferably used to induce pgr expression.

The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in diarrhea

J Biol Chem 2013 Jul 12;288(28):20404-15.PMID:23720748DOI:10.1074/jbc.M113.467860.

The apical membrane of intestinal epithelia expresses intermediate conductance K(+) channel (KCNN4), which provides the driving force for Cl(-) secretion. However, its role in diarrhea and regulation by Epac1 is unknown. Previously we have established that Epac1 upon binding of cAMP activates a PKA-independent mechanism of Cl(-) secretion via stimulation of Rap2-phospholipase Cε-[Ca(2+)]i signaling. Here we report that Epac1 regulates surface expression of KCNN4c channel through its downstream Rap1A-RhoA-Rho-associated kinase (ROCK) signaling pathway for sustained Cl(-) secretion. Depletion of Epac1 protein and apical addition of TRAM-34, a specific KCNN4 inhibitor, significantly abolished cAMP-stimulated Cl(-) secretion and apical K(+) conductance (IK(ap)) in T84WT cells. The current-voltage relationship of basolaterally permeabilized monolayers treated with Epac1 agonist 8-(4-chlorophenylthio)-2'-O- methyladenosine 3',5'-cyclic monophosphate showed the presence of an inwardly rectifying and TRAM-34-sensitive K(+) channel in T84WT cells that was absent in Epac1KDT84 cells. Reconstructed confocal images in Epac1KDT84 cells revealed redistribution of KCNN4c proteins into subapical intracellular compartment, and a biotinylation assay showed ∼83% lower surface expression of KCNN4c proteins compared with T84WT cells. Further investigation revealed that an Epac1 agonist activates Rap1 to facilitate IK(ap). Both RhoA inhibitor (GGTI298) and ROCK inhibitor (H1152) significantly reduced cAMP agonist-stimulated IK(ap), whereas the latter additionally reduced colocalization of KCNN4c with the apical membrane marker wheat germ agglutinin in T84WT cells. In vivo mouse ileal loop experiments showed reduced fluid accumulation by TRAM-34, GGTI298, or H1152 when injected together with cholera toxin into the loop. We conclude that Rap1A-dependent signaling of Epac1 involving RhoA-ROCK is an important regulator of intestinal fluid transport via modulation of apical KCNN4c channels, a finding with potential therapeutic value in diarrheal diseases.