Home>>Natural Products>>Cauloside D

Cauloside D Sale

(Synonyms: 葳岩仙皂苷 D) 目录号 : GC35617

Cauloside D 是从 Caulophyllum robustum Max 中分离出的一种三萜苷类化合物。Cauloside D 通过抑制 iNOS 和促炎细胞因子的表达发挥抗炎作用。

Cauloside D Chemical Structure

Cas No.:12672-45-6

规格 价格 库存 购买数量
5mg
¥2,421.00
现货
10mg
¥4,113.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cauloside D is a triterpene glycoside isolated from Caulophyllum robustum Max. Cauloside D exerts anti-inflammatory effects through the inhibition of expression of iNOS and proinflammatory cytokines[1].

[1]. Lee Y, et al. Anti-Inflammatory Effect of Triterpene Saponins Isolated from Blue Cohosh (Caulophyllum thalictroides). Evid Based Complement Alternat Med. 2012;2012:798192.

Chemical Properties

Cas No. 12672-45-6 SDF
别名 葳岩仙皂苷 D
分子式 C56H92O22 分子量 1117.32
溶解度 Soluble in DMSO 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.895 mL 4.475 mL 8.95 mL
5 mM 0.179 mL 0.895 mL 1.79 mL
10 mM 0.0895 mL 0.4475 mL 0.895 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Spectrum-Effect Relationships between Fingerprints of Caulophyllum robustum Maxim and Inhabited Pro-Inflammation Cytokine Effects

Molecules 2017 Oct 26;22(11):1826.PMID:29072610DOI:10.3390/molecules22111826.

Caulophyllum robustum Maxim (CRM) is a Chinese folk medicine with significant effect on treatment of rheumatoid arthritis (RA). This study was designed to explore the spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the anti-inflammatory effects of CRM. Seventeen common peaks were detected by fingerprint similarity evaluation software. Among them, 15 peaks were identified by Liquid Chromatography-Mass Spectrometry (LC-MS). Pharmacodynamics experiments were conducted in collagen-induced arthritis (CIA) mice to obtain the anti-inflammatory effects of different batches of CRM with four pro-inflammation cytokines (TNF-α, IL-β, IL-6, and IL-17) as indicators. These cytokines were suppressed at different levels according to the different batches of CRM treatment. The spectrum-effect relationships between chemical fingerprints and the pro-inflammation effects of CRM were established by multiple linear regression (MLR) and gray relational analysis (GRA). The spectrum-effect relationships revealed that the alkaloids (N-methylcytisine, magnoflorine), saponins (leiyemudanoside C, leiyemudanoside D, leiyemudanoside G, leiyemudanoside B, cauloside H, leonticin D, cauloside G, Cauloside D, cauloside B, cauloside C, and cauloside A), sapogenins (oleanolic acid), β-sitosterols, and unknown compounds (X3, X17) together showed anti-inflammatory efficacy. The results also showed that the correlation between saponins and inflammatory factors was significantly closer than that of alkaloids, and saponins linked with less sugar may have higher inhibition effect on pro-inflammatory cytokines in CIA mice. This work provided a general model of the combination of HPLC and anti-inflammatory effects to study the spectrum-effect relationships of CRM, which can be used to discover the active substance and to control the quality of this treatment.

Analytical methods for determination of magnoflorine and saponins from roots of Caulophyllum thalictroides (L.) Michx. using UPLC, HPLC and HPTLC

J Pharm Biomed Anal 2011 Dec 15;56(5):895-903.PMID:21872415DOI:10.1016/j.jpba.2011.07.028.

Analytical methods including HPLC, UPLC and HPTLC are presented for the determination of major alkaloid and triterpene saponins from the roots of Caulophyllum thalictroides (L.) Michx. (blue cohosh) and dietary supplements claiming to contain blue cohosh. A separation by LC was achieved using a reversed phase column, PDA with ELS detection, and ammonium acetate/acetonitrile gradient as the mobile phase. Owing to their low UV absorption, the triterpene saponins were detected by evaporative light scattering. The eight triterpene saponins (cauloside H, leonticin D, cauloside G, Cauloside D, cauloside B, cauloside C, cauloside A and saponin PE) and the alkaloid magnoflorine could be separated within 35 min using HPLC method and within 8.0 min using UPLC method with detection limits of 10 μg/mL for saponins and 1 μg/mL for magnoflorine. The detection wavelength was 320 nm for magnoflorine and ELS detection was used for the eight saponins. The methods were also successfully applied to analyze different dietary supplements. For the products claiming to contain blue cohosh, there was a significant variability in the amounts of triterpene saponins detected. Calculations based on the analysis results for dietary supplements showed that maximum daily intake of alkaloid and saponins vary with the form (solids/liquids) and recommended doses according to the products label. Intakes varied from 0.57 to 15.8 mg/day for magnoflorine and from 5.97 to 302.4 mg/day for total saponins. LC-mass spectrometry coupled with electrospray ionization (ESI) method is described for the identification and confirmation of nine compounds in plant samples and dietary products. A HPTLC method was also developed for the fast chemical fingerprint analysis of C. thalictroides samples.

HPLC-MS/MS method for the determination and pharmacokinetic study of six compounds against rheumatoid arthritis in rat plasma after oral administration of the extract of Caulophyllum robustum Maxim

J Pharm Biomed Anal 2020 Mar 20;181:112923.PMID:32029347DOI:10.1016/j.jpba.2019.112923.

Caulophyllum robustum Maxim (CRM) is a well-known traditional Chinese medicine (TCM) mainly present in the northeast, northwest and southwest regions of China, which is belong to the family Berberidaceae. The roots and rhizomes of CRM have been used as a famous TCM for the treatment of rheumatoid arthritis (RA). The selective, sensitive and accurate high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method for the determination and pharmacokinetic study cauloside H, leonticin D, cauloside G, Cauloside D, cauloside C and magnoflorine in rat plasma was developed and validated in this paper. Chromatographic separation was achieved by using a Waters ACQUITY UPLC HSS T3 (100 mm × 2.1 mm, 1.7 μm) with gradient elution using a mobile phase consisting of acetonitrile and 0.1 % formic acid in water at a flow rate of 0.4 mL/min. The detection was performed in multiple reaction monitoring (MRM) mode and electrospray ionization (ESI) in positive and negative modes. The linearity, precision, accuracy, extraction recovery, matrix effects and stability were assessed to validate the current high-performance liquid chromatography/mass spectrometry (HPLC-MS) assay. Good linearity was achieved for each analyte with a correlation coefficient (r2) > 0.99). All the precision (RSD) data were less than 12.20 %, the accuracies ranged from -12.39 % to 10.55 %, the recovery rates from the rat plasma ranged from 85.48%-98.69 %, and the matrix effects ranged from 80.96 % to 91.35 %. The validated approach was successfully applied to study the pharmacokinetic characteristics of saponins and alkaloids in plasma after administering CRME to rats, and this assay provides a platform for studying the active components of multicomponent traditional Chinese medicines and provides useful information for further clinical studies.

Systematic screening and characterization of prototype constituents and metabolites of triterpenoid saponins of Caulopphyllum robustum Maxim using UPLC-LTQ Orbitrap MS after oral administration in rats

J Pharm Biomed Anal 2019 May 10;168:75-82.PMID:30798208DOI:10.1016/j.jpba.2019.02.005.

Triterpenoid saponins are the main bioactive components in Caulopphyllum Robustum Maxim (CRM), and they have been reported to have extensive pharmacological properties, such as anti-inflammatory, immunomodulatory, and anti-tumor effects. Cauloside C, Cauloside D, Leonticin D and Cauloside H are the main active chemical constituents of CRM in the treatment of rheumatoid arthritis (RA). However, their metabolic processes and products remain unclear. Therefore, the purpose of this study was to analyze the metabolic components and metabolic pathways of total saponins after oral administration of CRM effective part (CRME) in rats. In this work, we collected plasma, bile, urine and feces of rats at different sampling time points after intragastric administration. The saponins and reference substances were separated from CRME and analyzed via Thermo Scientific™ Ultra Performance Liquid Chromatography-Orbitrap Elite Combined High resolution Mass Spectrometry. According to the structural characteristics of the compounds in CRM, the pyrolysis behavior of various components was inferred in the negative ion mode. Twenty-two components were found in rat plasma, bile, urine and stool; among these components, there were 8 prototypes and 14 metabolites. Seven prototypes and 8 metabolites were found in rat plasma; no prototype and 6 metabolites were found in bile; 5 prototypes and 8 metabolites were found in urine; and 4 prototypes and 9 metabolites were found in stool. The metabolites include deglycosylation products, sapogenin products, sulfides, and glucuronide conjugates. The same metabolites were also found in biological samples, and these products may be important metabolic pathways of triterpene saponins in rats. The current findings clarified the metabolic pathways of the main active ingredients in CRME and further elucidated the anti-RA drug-responsive substance basis of CRM.

Oleanane and ursane glycosides from Schefflera octophylla

Phytochemistry 1994 Nov;37(4):1131-7.PMID:7765658DOI:10.1016/s0031-9422(00)89543-6.

Twelve triterpene glycosides were isolated from the bark of Schefflera octophylla of Vietnamese origin. Three of them were identified as asiaticoside, Cauloside D and 3 alpha-hydroxyurs-12-ene-23,28-dioic acid 28-O-alpha-L-rhamnopyranosyl (1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside. The structures of nine new glycosides were elucidated by chemical and spectroscopic evidence. Including the known compounds, the 12 glycosides consisted of six pairs of corresponding ursene and oleanene glycosides and all of them had the same triose moiety at the C-28 position. The names scheffurosides A-F and scheffoleosides B-F were proposed for corresponding pairs of ursene and oleanene glycosides, respectively.