Home>>Signaling Pathways>> Neuroscience>> mAChR>>DREADD agonist 21

DREADD agonist 21 Sale

目录号 : GC30849

A muscarinic hM3Dq DREADD agonist

DREADD agonist 21 Chemical Structure

Cas No.:56296-18-5

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥827.00
现货
2mg
¥540.00
现货
5mg
¥982.00
现货
10mg
¥1,350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

DREADD agonist 21 activates hM3Dq (EC50 = 1.7 nM), a designer receptor exclusively activated by designer drugs (DREADD) derived from the human muscarinic acetylcholine M3 receptor.1 It does not agonize the hM3 receptor and displays relatively weaker binding affinities for serotonin 5-HT2A, 5-HT2C, α1A-adrenergic, and histamine H1 receptors (Kis = 66, 170, 280, and 6 nM, respectively).1

1.Chen, X., Choo, H., Huang, X.P., et al.The first structure-activity relationship studies for designer receptors exclusively activated by designer drugsACS Chem. Neurosci.6(3)476-484(2015)

Chemical Properties

Cas No. 56296-18-5 SDF
Canonical SMILES C12=CC=CC=C1NC3=CC=CC=C3C(N4CCNCC4)=N2
分子式 C17H18N4 分子量 278.35
溶解度 DMSO : ≥ 78 mg/mL (280.22 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.5926 mL 17.963 mL 35.926 mL
5 mM 0.7185 mL 3.5926 mL 7.1852 mL
10 mM 0.3593 mL 1.7963 mL 3.5926 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice

Muscarinic Designer Receptors Exclusively Activated by Designer Drugs (DREADD) gated by clozapine-N-oxide (CNO) allow selective G-protein cascade activation in genetically specified cell-types in vivo. Here we compare the pharmacokinetics, off-target effects and efficacy of CNO, clozapine (CLZ) and compound 21 (Cmpd-21) at the inhibitory DREADD human Gi-coupled M4 muscarinic receptor (hM4Di). The half maximal effective concentration (EC50) of CLZ was substantially lower (0.42 nM) than CNO (8.1 nM); Cmpd-21 was intermediate (2.95 nM). CNO was back-converted to CLZ in mice, and CLZ accumulated in brain tissue. However, CNO itself also entered the brain, and free cerebrospinal fluid (CSF) levels were within the range to activate hM4Di directly, while free (CSF) CLZ levels remained below the detection limit. Furthermore, directly injected CLZ was strongly converted to its pharmacologically active metabolite, norclozapine. Cmpd-21 showed a superior brain penetration and long-lasting presence. Although we identified a wide range of CNO and Cmpd-21 off-targets, there was hardly any nonspecific behavioural effects among the parameters assessed by the 5-choice-serial-reaction-time task. Our results suggest that CNO (3-5 mg/kg) and Cmpd-21 (0.4-1 mg/kg) are suitable DREADD agonists, effective at latest 15 min after intraperitoneal application, but both require between-subject controls for unspecific effects.

Vulnerability to addiction

Addiction is a chronic brain disease that has dramatic health and socioeconomic consequences worldwide. Multiple approaches have been used for decades to clarify the neurobiological basis of this disease and to identify novel potential treatments. This review summarizes the main brain networks involved in the vulnerability to addiction and specific innovative technological approaches to investigate these neural circuits. First, the evolution of the definition of addiction across the Diagnostic and Statistical Manual of Mental Disorders (DSM) is revised. We next discuss several innovative experimental techniques that, combined with behavioral approaches, have allowed recent critical advances in understanding the neural circuits involved in addiction, including DREADDs, calcium imaging, and electrophysiology. All these techniques have been used to investigate specific neural circuits involved in vulnerability to addiction and have been extremely useful to clarify the neurobiological basis of each specific component of the addictive process. These novel tools targeting specific brain regions are of great interest to further understand the different aspects of this complex disease. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.

DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs in Vitro and in Vivo

Chemogenetic tools such as designer receptors exclusively activated by designer drugs (DREADDs) are routinely used to modulate neuronal and non-neuronal signaling and activity in a relatively noninvasive manner. The first generation of DREADDs were templated from the human muscarinic acetylcholine receptor family and are relatively insensitive to the endogenous agonist acetylcholine but instead are activated by clozapine-N-oxide (CNO). Despite the undisputed success of CNO as an activator of muscarinic DREADDs, it has been known for some time that CNO is subject to a low rate of metabolic conversion to clozapine, raising the need for alternative chemical actuators of muscarinic-based DREADDs. Here we show that DREADD agonist 21 (C21) (11-(1-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine) is a potent and selective agonist at both excitatory (hM3Dq) and inhibitory (hM4Di) DREADDs and has excellent bioavailability, pharmacokinetic properties, and brain penetrability. We also show that C21-induced activation of hM3Dq and hM4Di in vivo can modulate bidirectional feeding in defined circuits in mice. These results indicate that C21 represents an alternative to CNO for in vivo studies where metabolic conversion of CNO to clozapine is a concern.

Abnormalities in the composition of the gut microbiota in mice after repeated administration of DREADD ligands

Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are known as genetically modified G-protein-coupled receptors (GPCRs), which can be activated by synthetic ligands such as clozapine N-oxide (CNO) and DREADD agonist 21 (compound 21: C21). The brain-gut-microbiota axis has a crucial role in bidirectional interactions between the brain and the gastrointestinal microbiota. In this study, we investigated whether repeated administration of CNO or C21 could influence the gut microbiota and short-chain fatty acids (SCFAs) in feces of adult mice. Repeated administration of CNO or C21 as drinking water did not alter the α- and β-diversity of gut microbiota in mice compared with control mice. However, we found significant changes in relative abundance for several bacteria in the CNO (or C21) group at the taxonomic level compared to the control group. The linear discriminant analysis effect size (LEfSe) algorithm distinguished the family Prevotellaceae, the genus Anaerocolumna, the genus Prevotella, and the genus Frisingicoccus, these four specific microbial markers for the CNO group relative to the control group. In addition, the LEfSe algorithm identified the family Clostridiaceae, the genus Faecalicatena and the genus Marinisporobacter, these three bacteria of different taxonomic as potential microbial markers for the C21 group relative to the control group. In contrast, repeated administration of CNO (or C21) did not alter SCFAs in feces samples of adult mice. The data suggest that repeated administration of CNO or C21 contributes to an unusual organization of the gut microbiota in adult mice. Therefore, abnormalities in the composition of gut microbiota by repeated dosing of DREADD ligands should be taken into consideration for behavioral and biological functions in rodents treated with DREADD ligands.

Modulation by DREADD reveals the therapeutic effect of human iPSC-derived neuronal activity on functional recovery after spinal cord injury

Transplantation of neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs) is considered to be a promising therapy for spinal cord injury (SCI) and will soon be translated to the clinical phase. However, how grafted neuronal activity influences functional recovery has not been fully elucidated. Here, we show the locomotor functional changes caused by inhibiting the neuronal activity of grafted cells using a designer receptor exclusively activated by designer drugs (DREADD). In vitro analyses of inhibitory DREADD (hM4Di)-expressing cells demonstrated the precise inhibition of neuronal activity via administration of clozapine N-oxide. This inhibition led to a significant decrease in locomotor function in SCI mice with cell transplantation, which was exclusively observed following the maturation of grafted neurons. Furthermore, trans-synaptic tracing revealed the integration of graft neurons into the host motor circuitry. These results highlight the significance of engrafting functionally competent neurons by hiPSC-NS/PC transplantation for sufficient recovery from SCI.