Home>>Signaling Pathways>> Metabolism>> PDE>>BPN14770

BPN14770 Sale

(Synonyms: BPN14770) 目录号 : GC35543

Zatolmilast (BPN14770) is a selective allosteric inhibitor of phosphodiesterase 4D (PDE4D) with IC50 of 7.8 nM and 7.4 nM for PDE4D7 and PDE4D3, respectively.

BPN14770 Chemical Structure

Cas No.:1606974-33-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,772.00
现货
5mg
¥2,520.00
现货
10mg
¥4,950.00
现货
25mg
¥8,910.00
现货
50mg
¥14,850.00
现货
100mg
¥20,250.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Zatolmilast (BPN14770) is a selective allosteric inhibitor of phosphodiesterase 4D (PDE4D) with IC50 of 7.8 nM and 7.4 nM for PDE4D7 and PDE4D3, respectively.

[1] Mark E Gurney, et al. J Med Chem. 2019 May 23;62(10):4884-4901.

Chemical Properties

Cas No. 1606974-33-7 SDF
别名 BPN14770
Canonical SMILES O=C(O)CC1=CC=C(CC2=CC(C3=CC=CC(Cl)=C3)=NC(C(F)(F)F)=C2)C=C1
分子式 C21H15ClF3NO2 分子量 405.8
溶解度 DMSO: 260 mg/mL (640.71 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.4643 mL 12.3213 mL 24.6427 mL
5 mM 0.4929 mL 2.4643 mL 4.9285 mL
10 mM 0.2464 mL 1.2321 mL 2.4643 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A Novel PDE4D Inhibitor BPN14770 Reverses Scopolamine-Induced Cognitive Deficits via cAMP/SIRT1/Akt/Bcl-2 Pathway

Front Cell Dev Biol 2020 Dec 10;8:599389.PMID:33363155DOI:10.3389/fcell.2020.599389.

A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively). Therefore to study selective inhibition of PDE4D by BPN14770, a subtype selective allosteric inhibitor of PDE4D, we utilized a line of mice in which the PDE4D gene had been humanized by mutating the critical tyrosine to phenylalanine. Relatively low doses of BPN14770 were effective at reversing scopolamine-induced memory and cognitive deficits in humanized PDE4D mice. Inhibition of PDE4D alters the expression of protein kinase A (PKA), Sirt1, Akt, and Bcl-2/Bax which are components of signaling pathways for regulating endocrine response, stress resistance, neuronal autophagy, and apoptosis. Treatment with a series of antagonists, such as H89, sirtinol, and MK-2206, reversed the effect of BPN14770 as shown by behavioral tests and immunoblot analysis. These findings suggest that inhibition of PDE4D enhances signaling through the cAMP-PKA-SIRT1-Akt -Bcl-2/Bax pathway and thereby may provide therapeutic benefit in neurocognitive disorders.

Memory enhancing effects of BPN14770, an allosteric inhibitor of phosphodiesterase-4D, in wild-type and humanized mice

Neuropsychopharmacology 2018 Oct;43(11):2299-2309.PMID:30131563DOI:10.1038/s41386-018-0178-6.

Inhibitors of phosphodiesterase-4 (PDE4) have beneficial effects on memory in preclinical and clinical studies. Development of these drugs has stalled due to dose-limiting side effects of nausea and emesis. While use of subtype-selective inhibitors (i.e., for PDE4A, B, or D) could overcome this issue, conservation of the catalytic region, to which classical inhibitors bind, limits this approach. The present study examined the effects of BPN14770, an allosteric inhibitor of PDE4D, which binds to a primate-specific, N-terminal region. In mice engineered to express PDE4D with this primate-specific sequence, BPN14770 was 100-fold more potent for improving memory than in wild-type mice; meanwhile, it exhibited low potency in a mouse surrogate model for emesis. BPN14770 also antagonized the amnesic effects of scopolamine, increased cAMP signaling in brain, and increased BDNF and markers of neuronal plasticity associated with memory. These data establish a relationship between PDE4D target engagement and effects on memory for BPN14770 and suggest clinical potential for PDE4D-selective inhibitors.

Protection from Amyloid β Peptide-Induced Memory, Biochemical, and Morphological Deficits by a Phosphodiesterase-4D Allosteric Inhibitor

J Pharmacol Exp Ther 2019 Nov;371(2):250-259.PMID:31488603DOI:10.1124/jpet.119.259986.

Recent imaging studies of amyloid and tau in cognitively normal elderly subjects imply that Alzheimer's pathology can be tolerated by the brain to some extent due to compensatory mechanisms operating at the cellular and synaptic levels. The present study investigated the effects of an allosteric inhibitor of phosphodiesterase-4D (PDE4D), known as BPN14770 (2-(4-((2-(3-Chlorophenyl)-6-(trifluoromethyl)pyridin-4-yl)methyl)phenyl)acetic Acid), on impairment of memory, dendritic structure, and synaptic proteins induced by bilateral microinjection of oligomeric amyloid beta (Aβ 1-42 into the hippocampus of humanized PDE4D (hPDE4D) mice. The hPDE4D mice provide a unique and powerful genetic tool for assessing PDE4D target engagement. Behavioral studies showed that treatment with BPN14770 significantly improved memory acquisition and retrieval in the Morris water maze test and the percentage of alternations in the Y-maze test in the model of Aβ impairment. Microinjection of oligomeric Aβ 1-42 caused decreases in the number of dendrites, dendritic length, and spine density of pyramid neurons in the hippocampus. These changes were prevented by BPN14770 in a dose-dependent manner. Furthermore, molecular studies showed that BPN14770 prevented Aβ-induced decreases in synaptophysin, postsynaptic density protein 95, phosphorylated cAMP-response element binding protein (CREB)/CREB, brain-derived neurotrophic factor, and nerve growth factor inducible protein levels in the hippocampus. The protective effects of BPN14770 against Aβ-induced memory deficits, synaptic damage, and the alteration in the cAMP-meditated cell signaling cascade were blocked by H-89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride), an inhibitor of protein kinase A. These results suggest that BPN14770 may activate compensatory mechanisms that support synaptic health even with the onset of amyloid pathology in Alzheimer's disease. SIGNIFICANCE STATEMENT: This study demonstrates that a phosphodiesterase-4D allosteric inhibitor, BPN14770, protects against memory loss and neuronal atrophy induced by oligomeric Aβ 1-42. The study provides useful insight into the potential role of compensatory mechanisms in Alzheimer's disease in a model of oligomeric Aβ 1-42 neurotoxicity.

Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer's disease

Expert Opin Investig Drugs 2017 Sep;26(9):1033-1048.PMID:28772081DOI:10.1080/13543784.2017.1364360.

Phosphodiesterase (PDE) inhibitors improve signaling pathways in brain circuits by increasing intracellular cyclic adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). In the last decade, the first clinical studies investigating selective PDE inhibitors in Alzheimer's disease (AD) have been initiated, based on their positive effects on cognitive processes and neuroprotection in numerous animal studies. Areas covered: This article reviews the clinical studies investigating the pro-cognitive/neuroprotective effects of PDE inhibitors in patients with AD, as well as in age-associated memory impaired elderly and patients with mild cognitive impairment (MCI), the prodromal stage of AD. PDE inhibitors will also be discussed with respect to adverse effects including safety and tolerability. Expert opinion: The limited available data of clinical studies with PDE inhibitors tested in different populations of AD patients do not allow the drawing of any concrete conclusion yet. Currently, studies with a PDE3 (cilostazol) or PDE9 inhibitor (BI 409,306) are still ongoing in patients with MCI or AD, respectively. Studies with PDE4 inhibitors (HT-0712, roflumilast and BPN14770) in healthy elderly and elderly with age-associated memory impairments indicate that the optimum dose and/or inhibiting the most relevant PDE isoform hold great promise when tested in the appropriate population of patients with MCI or AD eventually.

Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial

Nat Med 2021 May;27(5):862-870.PMID:33927413DOI:10.1038/s41591-021-01321-w.

The goal of this study was to determine whether a phosphodiesterase-4D (PDE4D) allosteric inhibitor (BPN14770) would improve cognitive function and behavioral outcomes in patients with fragile X syndrome (FXS). This phase 2 trial was a 24-week randomized, placebo-controlled, two-way crossover study in 30 adult male patients (age 18-41 years) with FXS. Participants received oral doses of BPN14770 25 mg twice daily or placebo. Primary outcomes were prespecified as safety and tolerability with secondary efficacy outcomes of cognitive performance, caregiver rating scales and physician rating scales (ClinicalTrials.gov identifier: NCT03569631 ). The study met the primary outcome measure since BPN14770 was well tolerated with no meaningful differences between the active and placebo treatment arms. The study also met key secondary efficacy measures of cognition and daily function. Cognitive benefit was demonstrated using the National Institutes of Health Toolbox Cognition Battery assessments of Oral Reading Recognition (least squares mean difference +2.81, P = 0.0157), Picture Vocabulary (+5.81, P = 0.0342) and Cognition Crystallized Composite score (+5.31, P = 0.0018). Benefit as assessed by visual analog caregiver rating scales was judged to be clinically meaningful for language (+14.04, P = 0.0051) and daily functioning (+14.53, P = 0.0017). Results from this study using direct, computer-based assessment of cognitive performance by adult males with FXS indicate significant cognitive improvement in domains related to language with corresponding improvement in caregiver scales rating language and daily functioning.