Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Ethylmalonic acid

Ethylmalonic acid Sale

(Synonyms: 乙基丙二酸) 目录号 : GC33748

Ethylmalonicacid是一种非致癌性的潜在有毒物质,与神经性厌食和甲氧基脱羧酶缺乏症有关。

Ethylmalonic acid Chemical Structure

Cas No.:601-75-2

规格 价格 库存 购买数量
1g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Ethylmalonic acid is non-carcinogenic potentially toxic and associated with anorexia nervosa and malonyl-CoA decarboxylase deficiency.

[1]. Gregersen N, et al. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): quantitative urinary excretion pattern of 23 biologically significant organic acids in three cases. Clin Chim Acta. 1983 Aug 15;132(2):181-91. [2]. Yano S, et al. A new case of malonyl coenzyme A decarboxylase deficiency presenting with cardiomyopathy. Eur J Pediatr. 1997 May;156(5):382-3.

Chemical Properties

Cas No. 601-75-2 SDF
别名 乙基丙二酸
Canonical SMILES O=C(O)C(CC)C(O)=O
分子式 C5H8O4 分子量 132.11
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.5694 mL 37.8472 mL 75.6945 mL
5 mM 1.5139 mL 7.5694 mL 15.1389 mL
10 mM 0.7569 mL 3.7847 mL 7.5694 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Multiplexed LC-MS/MS analysis of methylsuccinic acid, Ethylmalonic acid, and glutaric acid in plasma and urine

Anal Biochem 2022 May 15;645:114604.PMID:35217005DOI:10.1016/j.ab.2022.114604.

Low molecular-mass aliphatic carboxylic acids are critically important for intermediate metabolism and may serve as important biomarkers for metabolic homeostasis. Here in, we focused on multiplexed method development of aliphatic carboxylic analytes, including methylsuccinic acid (MSA), Ethylmalonic acid (EMA), and glutaric acid (GA). Also assessed was their utility in a population's health as well as metabolic disease screening in both plasma and urine matrices. MSA, EMA, and GA are constitutional isomers of dicarboxylic acid with high polarity and poor ionization efficiency, resulting in such challenges as poor signal intensity and retention, particularly in reversed-phase liquid chromatography with electrospray mass spectrometry (RP-LC-ESI-MS/MS). Derivatization using n-butanol was performed in the sample preparation to enhance the signal intensity accompanied with a positive charge from ionization in complicated biomatrices as well as to improve the separation of these isomers with optimal retention. Fit-for-purpose method validation results demonstrated quantitative ranges for MSA/EMA/GA from 5/10/20 ng/mL to 400 ng/mL in plasma analysis, and 100/200/100 ng/mL to 5000/10000/5000 ng/mL in urine analysis. This validated method demonstrates future utility when exploring population health analysis and biomarker development in metabolic diseases.

Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum

J Neurochem 2021 Jul;158(2):262-281.PMID:33837559DOI:10.1111/jnc.15363.

Tissue accumulation and high urinary excretion of Ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.

Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of urinary Ethylmalonic acid for the diagnosis of ethylmalonic aciduria

J Sep Sci 2020 Apr;43(7):1365-1371.PMID:31958360DOI:10.1002/jssc.201901044.

Ethylmalonic acid is a metabolic organic acid, and its accumulation in urine is diagnostic of ethylmalonic aciduria. In this study, a simple and fast method employing capillary electrophoresis equipped with capacitively coupled contactless conductivity detection was developed for the detection of Ethylmalonic acid in urine samples. The optimized electrophoretic separation was performed in 50 mmol/L 2-(N-morpholino)ethanesulfonic acid solution, buffered at a pH of 6.5, and contained 0.13 mmol/L cetyltrimethylammonium bromide as an electroosmotic modifier. Electrophoresis was run at 28 kV in reversed polarity. The linear range of Ethylmalonic acid concentration was between 1 and 100 mg/L with a regression coefficient of 0.9998. This method had good intra- and interday precision with <5% relative standard deviations. The detection limit (signal-to-noise ratio = 3) and the quantification limit (signal-to-noise ratio = 10) values were 0.139 and 0.466 mg/L, respectively. Using our optimized conditions, the method was successfully employed for the detection of Ethylmalonic acid in urine sample of ethylmalonic aciduria patient.

Ethylmalonic acid impairs brain mitochondrial succinate and malate transport

Mol Genet Metab 2012 Jan;105(1):84-90.PMID:22133302DOI:10.1016/j.ymgme.2011.10.006.

Tissue accumulation and high urinary excretion of Ethylmalonic acid (EMA) occur in ethylmalonic encephalopathy (EE) and short chain acyl-CoA dehydrogenase deficiency (SCADD). Although these autosomal recessive disorders are clinically characterized by neurological abnormalities, the mechanisms underlying the brain damage are poorly known. Considering that little is known about the neurotoxicity of EMA and that hyperlacticacidemia occurs in EE and SCADD, we evaluated the effects of this metabolite on important parameters of oxidative metabolism in isolated rat brain mitochondria. EMA inhibited either ADP-stimulated or uncoupled mitochondrial respiration supported by succinate and malate, but not by glutamate plus malate. In addition, EMA mildly stimulated oxygen consumption by succinate-respiring mitochondria in resting state. Methylmalonic acid (MMA), malonic acid (MA) and butylmalonic acid (BtMA) had a similar effect on ADP-stimulated or uncoupled respiration. Furthermore, EMA-, MMA- and BtMA-induced inhibitory effects on succinate oxidation were significantly minimized by nonselective permeabilization of the mitochondrial membranes by alamethicin, whereas MA inhibitory effect was not altered. In addition, MA was the only tested compound that reduced succinate dehydrogenase activity. We also observed that EMA markedly inhibited succinate and malate transport through the mitochondrial dicarboxylate carrier. Mitochondrial membrane potential was also reduced by EMA and MA, but not by MMA, using succinate as electron donor, whereas none of these compounds was able to alter the membrane potential using glutamate plus malate as electron donors. Taken together, our results strongly indicate that EMA impairs succinate and malate uptake through the mitochondrial dicarboxylate carrier.

Ethylmalonic acid induces permeability transition in isolated brain mitochondria

Neurotox Res 2014 Aug;26(2):168-78.PMID:24557940DOI:10.1007/s12640-014-9460-5.

Predominant accumulation of Ethylmalonic acid (EMA) in tissues and biological fluids is a characteristic of patients affected by short chain acyl-CoA dehydrogenase deficiency and ethylmalonic encephalopathy. Neurological abnormalities are frequently found in these disorders, but the mechanisms underlying the brain injury are still obscure. Since hyperlacticacidemia is also found in many affected patients indicating a mitochondrial dysfunction; in the present work, we evaluated the in vitro and ex vivo effects of EMA plus Ca(2+) on mitochondrial integrity and redox balance in succinate-supported brain organelles. We verified that the evaluated parameters were disturbed only when EMA was associated with exogenous micromolar Ca(2+) concentrations. Thus, we found that this short chain organic acid plus Ca(2+) dissipated the membrane potential and provoked mitochondrial swelling, as well as impaired the mitochondrial Ca(2+) retention capacity, resulting in a rapid Ca(2+) release and decreased NAD(P)H matrix content. In contrast, EMA was not able to stimulate mitochondrial hydrogen peroxide generation. We also observed that all these effects were prevented by the mitochondrial Ca(2+) uptake inhibitor ruthenium red and the mitochondrial permeability transition (MPT) inhibitors cyclosporin A (CsA) and ADP. Furthermore, mitochondria isolated from rat brains after in vivo intrastriatal administration of EMA was more susceptible to Ca(2+)-induced swelling, which was fully prevented by CsA and ADP. Finally, EMA significantly decreased striatal slice viability, which was attenuated by CsA. The data strongly indicate that EMA reduced the mitochondrial threshold for Ca(2+)-induced MPT reinforcing the role of this cation in EMA-induced disruption of mitochondrial bioenergetics. It is, therefore, presumed that EMA acting synergistically with Ca(2+) compromises mitochondrial energy homeostasis in the central nervous system that may explain at least in part the neurologic alterations presented by patients with abnormal levels of this organic acid.