Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Deoxycholic acid (Cholanoic Acid)

Deoxycholic acid (Cholanoic Acid) Sale

(Synonyms: 去氧胆酸; Cholanoic Acid; Desoxycholic acid) 目录号 : GC33762

A secondary bile acid

Deoxycholic acid (Cholanoic Acid) Chemical Structure

Cas No.:83-44-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
100mg
¥446.00
现货
500mg
¥625.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

MGC803 cells are cultured in Roswell Park Memorial Institute media supplemented with 10% fetal calf serum and 100 U/mL Penicillin and 100 mg/mL Streptomycin. To generate MGC803-resistant cells, the pH value of the MGC803 culture medium is adjusted to the experimental conditions using the hydrochloric acid (A). The bile acids GCDA and Deoxycholic acid are diluted to optimal working concentrations of 100 μM (B) with culture medium, and the overall pH (A+B) is adjusted to pH 5.5, simulating the gastric environment. Initially, MGC803 cells are chronically exposed to acidified medium with bile acids (A+B) for 10 min every 24 h. The experimental time and conditions are optimized in our preliminary experiments, which show that 10 min is enough and does not result in cell damage. This procedure is repeated and it takes 60 weeks for the MGC803 cells to survive and proliferate under the exposure of A+B for 120 min. Control untreated cells are cultured in neutral RPMI medium at pH 7.4 in parallel to the resistant cells for 60 weeks. The morphological changes in MGC803 cells exposed to acidified bile acids (A+B) are documented at 30 and 60 weeks[2].

References:

[1]. Somm E, et al. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight. 2017 Apr 20;2(8). pii: 91809.
[2]. Wang X, et al. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in micedependent on c-Myc expression. Cancer Med. 2017 Apr;6(4):788-797.

产品描述

Deoxycholic acid (DCA) is a secondary bile acid that is formed via microbial transformation of cholic acid in the colon.1 It can be conjugated to glycine or taurine to produce glycodeoxycholic acid or taurodeoxycholic acid , respectively, in hepatocytes.1,2,3 DCA (0.2% v/v) inhibits spore germination induced by taurocholic acid in seven C. difficile strains, as well as inhibits growth and decreases the cytotoxicity of C. difficile culture supernatants to Vero cells when used at a concentration of 0.02% v/v.1 It inhibits ionizing radiation-induced p53-dependent transcription in a reporter assay using HCT116 cells when used at a concentration of 200 ?M.4 Fecal and intestinal tissue levels of DCA are increased in a rat model of high-fat diet-induced obesity compared with rats fed a normal diet.5 Increased serum DCA levels have been found in patients with colorectal cancer.6

1.Thanissery, R., Winston, J.A., and Theriot, C.M.Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acidsAnaerobe4586-100(2017) 2.Schmid, A., Neumann, H., Karrasch, T., et al.Bile acid metabolome after an oral lipid tolerance test by liquid chromatography-tandem mass spectrometry (LC-MS/MS)PLoS One11(2)e0148869(2016) 3.?arenac, T.M., and Mikov, M.Bile acid synthesis: From nature to the chemical modification and synthesis and their applications as drugs and nutrientsFront. Pharmacol.9939(2018) 4.Qiao, D., Gaitonde, S.V., Qi, W., et al.Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradationCarcinogenesis22(6)957-964(2001) 5.Lin, H., An, Y., Tang, H., et al.Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat modelJ. Agric. Food Chem.67(13)3624-3632(2019) 6.Bayerd?rffer, E., Mannes, G.A., Richter, W.O., et al.Increased serum deoxycholic acid levels in men with colorectal adenomasGastroenterology104(1)145-151(1993)

Chemical Properties

Cas No. 83-44-3 SDF
别名 去氧胆酸; Cholanoic Acid; Desoxycholic acid
Canonical SMILES C[C@@]1([C@@]2([H])[C@H](C)CCC(O)=O)[C@](CC2)([H])[C@@](CC[C@@]3([H])[C@@]4(CC[C@@H](O)C3)C)([H])[C@]4([H])C[C@@H]1O
分子式 C24H40O4 分子量 392.57
溶解度 DMSO : ≥ 100 mg/mL (254.73 mM) 储存条件 Store at RT
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5473 mL 12.7366 mL 25.4732 mL
5 mM 0.5095 mL 2.5473 mL 5.0946 mL
10 mM 0.2547 mL 1.2737 mL 2.5473 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

LC/ESI-tandem mass spectrometric determination of bile acid 3-sulfates in human urine 3beta-Sulfooxy-12alpha-hydroxy-5beta-cholanoic acid is an abundant nonamidated sulfate

J Chromatogr B Analyt Technol Biomed Life Sci 2007 Feb 1;846(1-2):69-77.PMID:16949895DOI:10.1016/j.jchromb.2006.08.013.

We developed a highly sensitive and quantitative method to detect bile acid 3-sulfates in human urine employing liquid chromatography/electrospray ionization-tandem mass spectrometry. This method allows simultaneous analysis of bile acid 3-sulfates, including nonamidated, glycine-, and taurine-conjugated bile acids, cholic acid (CA), chenodeoxycholic acid (CDCA), Deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), and lithocholic acid (LCA), using selected reaction monitoring (SRM) analysis. The method was applied to analyze bile acid 3-sulfates in human urine from healthy volunteers. The results indicated an unknown compound with the nonamidated common bile acid 3-sulfates on the chromatogram obtained by the selected reaction monitoring analysis. By comparison of the retention behavior and MS/MS spectrum of the unknown peak with the authentic specimen, the unknown compound was identified as 3beta,12alpha-dihydroxy-5beta-cholanoic acid 3-sulfate.

Mechanism of intestinal 7 alpha-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product

J Lipid Res 1991 Jan;32(1):89-96.PMID:2010697doi

We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding Deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (Deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.

Nuclear magnetic resonance spectroscopy of bile acids. Development of two-dimensional NMR methods for the elucidation of proton resonance assignments for five common hydroxylated bile acids, and their parent bile acid, 5 beta-cholanoic acid

J Lipid Res 1985 Sep;26(9):1068-78.PMID:4067429doi

The complete 1H nuclear magnetic resonance assignments have been made for the common mono-, di-, and trihydroxy 5 beta-cholanoic acids; lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, Deoxycholic acid, cholic acid, and the unsubstituted parent compound, 5 beta-cholanoic acid, by heteronuclear-correlated two-dimensional NMR. The known 13C chemical shifts of these compounds were used to make the proton resonance assignments, and consistency of the carbon and proton assignments was verified by expected changes due to substituent effects. This has led to clarification of previously published 13C NMR resonance assignments. Addition of the 3 alpha, 7 alpha, and 12 alpha hydroxyl substituent effects derived from the mono- and dihydroxycholanoic acids yielded predicted values for proton chemical shifts of the trihydroxy-substituted 5 beta-cholanoic acid, cholic acid, that agreed well with experimental values. It is suggested that the individual substituent effects can be used to predict proton chemical shifts for hydroxycholanic acids containing other combinations of 3 alpha, 7 alpha, 7 beta, and 12 alpha hydroxyl groups.

Bile acid transformations by Alcaligenes recti

Steroids 1993 Feb;58(2):79-86.PMID:8484188DOI:10.1016/0039-128x(93)90057-t.

Metabolism of cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and Deoxycholic acid by the grown cells of the bacterium Alcaligenes recti suspended in water was studied. Each isolated metabolite was characterized by the application of various spectroscopic methods. Cholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and Deoxycholic acid yielded methylated derivatives 3 alpha-methoxy-7 alpha, 12 alpha-dihydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 alpha-hydroxy-5 beta-cholanoic acid, 3 alpha-methoxy-7 beta-hydroxy-5 beta-cholanoic acid, and 3 alpha-methoxy-12 alpha-hydroxy-5 beta-cholanoic acid, respectively. In addition, cholic acid furnished 7 alpha, 12 alpha-dihydroxy-3-oxochol-4-en-24-oic acid; chenodeoxycholic acid gave 7 alpha-hydroxy-3-oxo-5 beta-cholanoic acid and 7 alpha-hydroxy-3-oxochol-4-en-24-oic acid while ursodeoxycholic acid yielded 7 beta-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochola-4,6-dien-24-oic acid. The formation of various metabolites showed that two competitive enzymic reactions, i.e., selective methylation of the 3 alpha-hydroxy group and dehydrogenation in the A/B rings, were operative. The methylation process was found to be enzymic involving an S-adenosyl-L-methionine (AdoMet)-dependent methyl transferase, and this reaction appeared to be inhibitory to the process of degradation of the ring system. In the other reaction sequence, degradation of the ring system was initiated by dehydrogenation of the 3 alpha-hydroxy group. A 7 beta-dehydratase activity producing the delta 6 double bond was also noticeable in the metabolism of ursodeoxycholic acid.

Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients

Front Pharmacol 2018 Sep 25;9:939.PMID:30319399DOI:10.3389/fphar.2018.00939.

Bile acids (BAs) are amphiphilic molecules with 24 carbon atoms and consist of a hydrophobic and a rigid steroid nucleus, to which are attached a hydrophilic hydroxyl group and a flexible acidic aliphatic side chain. The steroidal core of BAs constitutes a saturated cyclopentanoperhydrophenanthrene skeleton, consisting of three six-membered (A, B, and C) and one five-membered ring (D). Primary BAs are produced in the hepatocytes, while secondary BAs are formed by modifying the primary BAs in the intestinal lumen, i.e., by the reactions of 7α-dehydroxylation and deconjugation of cholic acid (CA) and chenodeoxycholic acid (CDCA). The most important secondary BAs are Deoxycholic acid (DCA) and lithocholic acid (LCA). The BAs realize their effects through nuclear farnesoid X receptors (FXRs) and membrane TGR5 receptors. It has been found that BAs are also associated with other receptors such as the vitamin D receptor (VDR), from which the most significant ligand is calcitriol, as well as with pregnane X receptor (PXR) and potentially with the constitutive androstane receptor (CAR), whose ligands are numerous, structurally different xenobiotics that show greater affinity to BAs. The BAs as therapeutic agents (drugs) have the potential to produce beneficial effects in cases of sexually transmitted diseases, primary biliary cirrhosis (PBC), primary sclerosing cholangitis, gallstones, digestive tract diseases, cystic fibrosis, and cancer. Ursodeoxycholic acid (UDCA) was the only drug approved by the US Food and Drug Administration (FDA) for the treatment of PBC. In this paper, the different pathways of bile acid biosynthesis are explained as well as chemical modifications and the synthesis of different keto derivatives of BAs. Also, the effects of BAs on digestion of nutrients, their role as drugs, and, in particular, the emphasis on the hypoglycemic properties of 7α, 12α-dihydroxy-12-keto-5β-cholanic acid in the treatment of diabetes mellitus are examined in detail.