Home>>Signaling Pathways>> Tyrosine Kinase>> c-FMS>>cFMS Receptor Inhibitor II

cFMS Receptor Inhibitor II Sale

目录号 : GC34528

cFMSReceptorInhibitorII是一种CSF1R激酶抑制剂。CSF-1是一种细胞因子。

cFMS Receptor Inhibitor II Chemical Structure

Cas No.:959860-85-6

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,485.00
现货
1mg
¥471.00
现货
5mg
¥1,350.00
现货
10mg
¥2,250.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

cFMS Receptor Inhibitor II is a CSF1R kinase inhibitor. CSF-1 is a cytokine[1]. CSF1R[1]

[1]. Brenton John SHORT, et al. Compositions and methods for obtaining enriched mesenchymal stem cell cultures. US20160032248A1.

Chemical Properties

Cas No. 959860-85-6 SDF
Canonical SMILES O=C(C1=C(NC2=CC=C(C)C(C)=C2)C3=CC=C(C4=CC=NC=C4)C=C3N=C1)N
分子式 C23H20N4O 分子量 368.43
溶解度 DMSO : 83.33 mg/mL (226.18 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7142 mL 13.5711 mL 27.1422 mL
5 mM 0.5428 mL 2.7142 mL 5.4284 mL
10 mM 0.2714 mL 1.3571 mL 2.7142 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Epilepsy-on-a-Chip System for Antiepileptic Drug Discovery

Objective: Hippocampal slice cultures spontaneously develop chronic epilepsy several days after slicing and are used as an in vitro model of post-traumatic epilepsy. Here, we describe a hybrid microfluidic-microelectrode array (μflow-MEA) technology that incorporates a microfluidic perfusion network and electrodes into a miniaturized device for hippocampal slice culture based antiepileptic drug discovery. Methods: Field potential simulation was conducted to help optimize the electrode design to detect a seizure-like population activity. Epilepsy-on-a-chip model was validated by chronic electrical recording, neuronal survival quantification, and anticonvulsant test. To demonstrate the application of μflow-MEA in drug discovery, we utilized a two-stage screening platform to identify potential targets for antiepileptic drugs. In Stage I, lactate and lactate dehydrogenase biomarker assays were performed to identify potential drug candidates. In Stage II, candidate compounds were retested with μflow-MEA-based chronic electrical assay to provide electrophysiological confirmation of biomarker results. Results and conclusion: We screened 12 receptor tyrosine kinases inhibitors, and EGFR/ErbB-2 and cFMS inhibitors were identified as novel antiepileptic compounds. Significance: This epilepsy-on-a-chip system provides the means for rapid dissection of complex signaling pathways in epileptogenesis, paving the way for high-throughput antiepileptic drug discovery.

Discovery of a novel azetidine scaffold for colony stimulating factor-1 receptor (CSF-1R) Type II inhibitors by the use of docking models

We report the discovery of a novel azetidine scaffold for colony stimulating factor-1 receptor (CSF-1R) Type II inhibitors by using a structure-based drug design (SBDD) based on a docking model. The work leads to the representative compound 4a with high CSF-1R inhibitory activity (IC50 = 9.1 nM). The obtained crystal structure of an azetidine compound with CSF-1R, which matched our predicted docking model, demonstrates that the azetidine compounds bind to the DFG-out conformation of the protein as a Type II inhibitor.

Dysregulation of bone remodeling by imatinib mesylate

Imatinib mesylate is a rationally designed tyrosine kinase inhibitor that has revolutionized the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Although the efficacy and tolerability of imatinib are a vast improvement over conventional chemotherapies, the drug exhibits off-target effects. An unanticipated side effect of imatinib therapy is hypophosphatemia and hypocalcemia, which in part has been attributed to drug-mediated changes to renal and gastrointestinal handling of phosphate and calcium. However, emerging data suggest that imatinib also targets cells of the skeleton, stimulating the retention and sequestration of calcium and phosphate to bone, leading to decreased circulating levels of these minerals. The aim of this review is to highlight our current understanding of the mechanisms surrounding the effects of imatinib on the skeleton. In particular, it examines recent studies suggesting that imatinib has direct effects on bone-resorbing osteoclasts and bone-forming osteoblasts through inhibition of c-fms, c-kit, carbonic anhydrase II, and the platelet-derived growth factor receptor. The potential application of imatinib in the treatment of cancer-induced osteolysis will also be discussed.

Receptor activator of NF-kappaB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells

Interleukin-1 (IL-1) is a proinflammatory cytokine that is a potent stimulator of bone resorption and an inhibitor of bone formation, whereas macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB (RANK) ligand (RANKL) are essential and sufficient for osteoclast differentiation. Recently, we showed that IL-1alpha affects mineralized nodule formation in vitro and halts bone matrix turnover. We also showed that IL-1alpha stimulates osteoclast formation via the interaction of RANKL with RANK by increasing M-CSF and prostaglandin E(2) and decreasing osteoprotegerin. Here, we examined the effects of IL-1alpha or RANKL and/or M-CSF in the presence of IL-1alpha on the expression of carbonic anhydrase II (CAII), cathepsin K, matrix metalloproteinase-9 (MMP-9), RANK, M-CSF receptor (c-fms), and c-fos transcription factor using RAW264.7 cells as osteoclast precursors. Cells were cultured for up to 14 days in 0 or 100 U/ml IL-1alpha and either 50 ng/ml RANKL, 10 ng/ml M-CSF, or 50 ng/ml RANKL+10 ng/ml M-CSF in the presence of 100 U/ml IL-1alpha. The formation of osteoclast-like cells was estimated using tartrate-resistant acid phosphatase staining. Expression of the genes coding for the six proteins of interest was determined using real-time PCR, and the expression of the three enzymes was examined using Western blotting or ELISA. In the presence of IL-1alpha, expression of CAII, cathepsin K, and MMP-9 was markedly increased in cells cultured with RANKL or M-CSF+RANKL, whereas expression was difficult to detect in cells cultured with IL-1alpha alone and M-CSF. RANK and c-fos expression was also increased in cells cultured with RANKL or M-CSF+RANKL in the presence of IL-1alpha, whereas c-fms expression did not change. These results indicate that the expression of CAII, cathepsin K, and MMP-9 in RAW264.7 cells is not induced by M-CSF, but by RANKL in the presence of IL-1alpha.

An anti-c-Fms antibody inhibits orthodontic tooth movement

Orthodontic force induces osteoclastogenesis in vivo. It has recently been reported that administration of an antibody against the macrophage-colony-stimulating factor (M-CSF) receptor c-Fms blocks osteoclastogenesis and bone erosion induced by tumor necrosis factor-alpha (TNF-alpha) administration. This study aimed to examine the effect of an anti-c-Fms antibody on mechanical loading-induced osteoclastogenesis and osteolysis in an orthodontic tooth movement model in mice. Using TNF receptor 1- and 2-deficient mice, we showed that orthodontic tooth movement was mediated by TNF-alpha. We injected anti-c-Fms antibody daily into a local site, for 12 days, during mechanical loading. The anti-c-Fms antibody significantly inhibited orthodontic tooth movement, markedly reduced the number of osteoclasts in vivo, and inhibited TNF-alpha-induced osteoclastogenesis in vitro. These findings suggest that M-CSF plays an important role in mechanical loading-induced osteoclastogenesis and bone resorption during orthodontic tooth movement mediated by TNF-alpha.