Home>>Signaling Pathways>> GPCR/G protein>> CCR>>CCR2 antagonist 1

CCR2 antagonist 1 Sale

目录号 : GC30560

CCR2antagonist1是C-C趋化因子受体2型(CCR2)高亲和力、长时间作用的拮抗剂,其Ki值为2.4nM。

CCR2 antagonist 1 Chemical Structure

Cas No.:1683534-96-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥7,398.00
现货
5mg
¥6,120.00
现货
10mg
¥9,900.00
现货
50mg
¥31,500.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

CCR2 antagonist 1 is a high-affinity and long-residence-time CCR2 antagonist, with a Ki of 2.4 nM.

The combination of SAR and SKR in the hit-to-lead process results in the discovery of a new higheaffinity and longeresidenceetime CCR2 antagonist (CCR2 antagonist 1 (compound 15a), Ki=2.4 nM; RT=714 min)[1].

[1]. Vilums M, et al. When structure-affinity relationships meet structure-kinetics relationships: 3-((Inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. Eur J Med Chem. 2015 Mar 26;93:121-34.

Chemical Properties

Cas No. 1683534-96-4 SDF
Canonical SMILES O=C([C@]1(C(C)C)C[C@H](N[C@@H]2CCC3=C2C=CC(Br)=C3)CC1)N4CC5=C(C=CC(C(F)(F)F)=C5)CC4
分子式 C28H32BrF3N2O 分子量 549.47
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8199 mL 9.0997 mL 18.1994 mL
5 mM 0.364 mL 1.8199 mL 3.6399 mL
10 mM 0.182 mL 0.91 mL 1.8199 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma

Gut.2017 Jan;66(1):157-167.PMID:26452628DOI: 10.1136/gutjnl-2015-310514.

Objective: Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. An alternative strategy is to target cells, such as tumour-infiltrating macrophages, in the HCC tumour microenvironment. The CCL2/CCR2 axis is required for recruitment of monocytes/macrophages and is implicated in various aspects of liver pathology, including HCC. We investigated the feasibility of CCL2/CCR2 as a therapeutic target against HCC. Design: CCL2 expression was analysed in two independent HCC cohorts. Growth of three murine HCC cells was evaluated in an orthotopic model, a postsurgical recurrence model and a subcutaneous model in mice after blocking CCL2/CCR2 axis by a novel CCR2 antagonist or knocking out of host CCR2. In vivo macrophage or T cell depletion and in vitro cell coculture were further conducted to investigate CCL2/CCR2-mediated crosstalk between tumour-associated macrophages (TAMs) and tumour cells. Result: CCL2 is overexpressed in human liver cancers and is prognostic for patients with HCC. Blockade of CCL2/CCR2 signalling with knockout of CCR2 or with a CCR2 antagonist inhibits malignant growth and metastasis, reduces postsurgical recurrence, and enhances survival. Further, therapeutic blocking of the CCL2/CCR2 axis inhibits the recruitment of inflammatory monocytes, infiltration and M2-polarisation of TAMs, resulting in reversal of the immunosuppression status of the tumour microenvironment and activation of an antitumorous CD8+ T cell response. Conclusions: In patients with liver cancer, CCL2 is highly expressed and is a prognostic factor. Blockade of CCL2/CCR2 signalling suppresses murine liver tumour growth via activating T cell antitumour immune response. The results demonstrate the translational potential of CCL2/CCR2 blockade for treatment of HCCs.

CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis

Ann Rheum Dis.2017 May;76(5):914-922.PMID:27965260DOI: 10.1136/annrheumdis-2016-210426.

Objectives: While various monocyte chemokine systems are increased in expression in osteoarthritis (OA), the hierarchy of chemokines and chemokine receptors in mediating monocyte/macrophage recruitment to the OA joint remains poorly defined. Here, we investigated the relative contributions of the CCL2/CCR2 versus CCL5/CCR5 chemokine axes in OA pathogenesis. Methods: Ccl2-, Ccr2-, Ccl5- and Ccr5-deficient and control mice were subjected to destabilisation of medial meniscus surgery to induce OA. The pharmacological utility of blocking CCL2/CCR2 signalling in mouse OA was investigated using bindarit, a CCL2 synthesis inhibitor, and RS-504393, a CCR2 antagonist. Levels of monocyte chemoattractants in synovial tissues and fluids from patients with joint injuries without OA and those with established OA were investigated using a combination of microarray analyses, multiplexed cytokine assays and immunostains. Results: Mice lacking CCL2 or CCR2, but not CCL5 or CCR5, were protected against OA with a concomitant reduction in local monocyte/macrophage numbers in their joints. In synovial fluids from patients with OA, levels of CCR2 ligands (CCL2, CCL7 and CCL8) but not CCR5 ligands (CCL3, CCL4 and CCL5) were elevated. We found that CCR2+ cells are abundant in human OA synovium and that CCR2+ macrophages line, invade and are associated with the erosion of OA cartilage. Further, blockade of CCL2/CCR2 signalling markedly attenuated macrophage accumulation, synovitis and cartilage damage in mouse OA. Conclusions: Our findings demonstrate that monocytes recruited via CCL2/CCR2, rather than by CCL5/CCR5, propagate inflammation and tissue damage in OA. Selective targeting of the CCL2/CCR2 system represents a promising therapeutic approach for OA.

Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury

J Am Soc Nephrol.2019 Oct;30(10):1825-1840.PMID:31315923DOI: 10.1681/ASN.2019010068.

Background: After bilateral kidney ischemia/reperfusion injury (IRI), monocytes infiltrate the kidney and differentiate into proinflammatory macrophages in response to the initial kidney damage, and then transition to a form that promotes kidney repair. In the setting of unilateral IRI (U-IRI), however, we have previously shown that macrophages persist beyond the time of repair and may promote fibrosis. Methods: Macrophage homing/survival signals were determined at 14 days after injury in mice subjected to U-IRI and in vitro using coculture of macrophages and tubular cells. Mice genetically engineered to lack Ccr2 and wild-type mice were treated ±CCR2 antagonist RS102895 and subjected to U-IRI to quantify macrophage accumulation, kidney fibrosis, and inflammation 14 and 30 days after the injury. Results: Failure to resolve tubular injury after U-IRI results in sustained expression of granulocyte-macrophage colony-stimulating factor by renal tubular cells, which directly stimulates expression of monocyte chemoattractant protein-1 (Mcp-1) by macrophages. Analysis of CD45+ immune cells isolated from wild-type kidneys 14 days after U-IRI reveals high-level expression of the MCP-1 receptor Ccr2. In mice lacking Ccr2 and wild-type mice treated with RS102895, the numbers of macrophages, dendritic cells, and T cell decreased following U-IRI, as did the expression of profibrotic growth factors and proimflammatory cytokines. This results in a reduction in extracellular matrix and kidney injury markers. Conclusions: GM-CSF-induced MCP-1/CCR2 signaling plays an important role in the cross-talk between injured tubular cells and infiltrating immune cells and myofibroblasts, and promotes sustained inflammation and tubular injury with progressive interstitial fibrosis in the late stages of U-IRI.

Synthesis of deuterium-labeled CCR2 antagonist JNJ-26131300, [4-(1H-indol- 3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid

J Labelled Comp Radiopharm.2022 May 15;65(5):147-151.PMID:35218060DOI: 10.1002/jlcr.3967.

Synthesis of multiple deuterium-labeled CCR2 antagonist JNJ-26131300, that is, [4-(1H-indol-3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid, is described. First, condensation of indole-D7 with 4-piperidone produced 3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole-D5 , which subsequently underwent catalytic hydrogenation to give 3-piperidin-4-yl-1H-indole-D5 . Next, bromo-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid was prepared through multiple steps from 3-(3,4,5-trifluoro-phenyl)-acrylic acid and bromo-piperidin-4-yl-acetic acid ethyl ester. Nucleophilic coupling of 3-piperidin-4-yl-1H-indole-D5 with bromo-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid afforded the desired compound [4-(1H-indol-3-yl)-piperidin-1-yl]-{1-[3-(3,4,5-trifluoro-phenyl)-acryloyl]-piperidin-4-yl}-acetic acid-D5 .

Treatment with CCR2 antagonist is neuroprotective but does not alter epileptogenesis in the pilocarpine rat model of epilepsy

Epilepsy Behav.2020 Jan;102:106695.PMID:31785482DOI: 10.1016/j.yebeh.2019.106695.

Neuroinflammation role on epileptogenesis has been the subject of increasing interest. Many studies showed elevation in cytokines and chemokines expression following seizures, such as, CCL2 protein (C-C motif ligand 2 chemokine) and its specific receptor, CCR2. In addition, recent studies manipulating the CCL2/CCR2 complex verified improved seizure outcome in different seizure models. In the present study, the effects of CCR2 antagonist was investigated using the pilocarpine rat model of epilepsy. Status epilepticus (SE) was induced by pilocarpine i.p. injection in adult rats. Daily oral treatment with CCR2 antagonist or vehicle was initiated 5 h following SE and lasted 5 or 10 days. Rats were euthanized 5 days after SE to evaluate neuronal damage and glial density or 30 days after SE to investigate spontaneous seizures development and seizure susceptibility to a second hit pentylenetetrazol (PTZ) test. Rats that received CCR2 antagonist presented less degenerating cells at hippocampal CA1 region. There was also a significant decrease in CA1 volume after SE that was not observed in treated rats. On the other hand, microglia cell density increased after SE regardless of CCR2 antagonist use. Treatment with CCR2 antagonist did not alter spontaneous seizure occurrence or later seizure susceptibility to PTZ in chronic rats. Additional rats were pretreated with CCR2 antagonist prior to SE induction, but this did not change SE progression. The data show that oral treatment with CCR2 antagonist is neuroprotective, but does not alter other epileptogenic factors, such as, neuroinflammation, or seizure development, after pilocarpine-induced SE in rats.