Home>>Signaling Pathways>> Immunology/Inflammation>> Apoptosis>>ATH686

ATH686 Sale

目录号 : GC62499

ATH686 是一种有效的,选择性的,ATP 竞争性的 FLT3 抑制剂。ATH686 靶向突变 FLT3 蛋白激酶活性,并通过诱导凋亡 (apoptosis) 和抑制细胞周期来抑制具有 FLT3 突变的细胞的增殖。ATH686 具有抗白血病作用。

ATH686 Chemical Structure

Cas No.:853299-52-2

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥4,086.00
现货
5 mg
¥3,600.00
现货
10 mg
¥6,120.00
现货
25 mg
¥12,150.00
现货
50 mg
¥19,800.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ATH686 is a potent, selective and ATP-competitive FLT3 inhibitor. ATH686 target mutant FLT3 protein kinase activity and inhibit the proliferation of cells harboring FLT3 mutants via induction of apoptosis and cell cycle inhibition. ATH686 has antileukemic effects[1].

ATH686 (1-100 µM; 3 days) potently inhibits cell proliferation (IC50 around 0.001 µM) via induction of apoptosis in FLT3-ITD-Ba/F3 cells and D835Y-Ba/F3 cells[1]. ATH686 (10 nM; for 15 minutes) inhibits autophosphorylation of mutant FLT3 in FLT3-ITD-Ba/F3 cells[1].

[1]. Ellen Weisberg, et al. Antileukemic Effects of Novel First- and Second-Generation FLT3 Inhibitors: Structure-Affinity Comparison. Genes Cancer. 2010 Oct;1(10):1021-32.

Chemical Properties

Cas No. 853299-52-2 SDF
分子式 C25H28F3N7O2 分子量 515.53
溶解度 DMSO : 250 mg/mL (484.94 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9398 mL 9.6988 mL 19.3975 mL
5 mM 0.388 mL 1.9398 mL 3.8795 mL
10 mM 0.194 mL 0.9699 mL 1.9398 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Antileukemic Effects of Novel First- and Second-Generation FLT3 Inhibitors: Structure-Affinity Comparison

Genes Cancer 2010 Oct;1(10):1021-32.PMID:21779428DOI:PMC3092267

Constitutively activated mutant FLT3 has emerged as a promising target for therapy for the subpopulation of acute myeloid leukemia (AML) patients who harbor it. The small molecule inhibitor, PKC412, targets mutant FLT3 and is currently in late-stage clinical trials. However, the identification of PKC412-resistant leukemic blast cells in the bone marrow of AML patients has propelled the development of novel and structurally distinct FLT3 inhibitors that have the potential to override drug resistance and more efficiently prevent disease progression or recurrence. Here, we present the novel first-generation "type II" FLT3 inhibitors, AFG206, AFG210, and AHL196, and the second-generation "type II" derivatives and AST487 analogs, AUZ454 and ATH686. All agents potently and selectively target mutant FLT3 protein kinase activity and inhibit the proliferation of cells harboring FLT3 mutants via induction of apoptosis and cell cycle inhibition. Cross-resistance between "type I" inhibitors, PKC412 and AAE871, was demonstrated. While cross-resistance was also observed between "type I" and first-generation "type II" FLT3 inhibitors, the high potency of the second-generation "type II" inhibitors was sufficient to potently kill "type I" inhibitor-resistant mutant FLT3-expressing cells. The increased potency observed for the second-generation "type II" inhibitors was observed to be due to an improved interaction with the ATP pocket of FLT3, specifically associated with introduction of a piperazine moiety and placement of an amino group in position 2 of the pyrimidine ring. Thus, we present 2 structurally novel classes of FLT3 inhibitors characterized by high selectivity and potency toward mutant FLT3 as a molecular target. In addition, presentation of the antileukemic effects of "type II" inhibitors, such as AUZ454 and ATH686, highlights a new class of highly potent FLT3 inhibitors able to override drug resistance that less potent "type I" inhibitors and "type II" first-generation FLT3 inhibitors cannot.