Home>>Signaling Pathways>> Immunology/Inflammation>> Reactive Oxygen Species>>Astaxanthin

Astaxanthin Sale

(Synonyms: 虾青素) 目录号 : GC31350

Astaxanthin (β-Carotene-4,4'-dione, Trans-Astaxanthin), a xanthophyll carotenoid, is a nutrient with unique cell membrane actions and diverse clinical benefits with excellent safety and tolerability. Astaxanthin, a red dietary carotenoid isolated from Haematococcus pluvialis, is a modulator of PPARγ and a potent antioxidant with antiproliferative, neuroprotective and anti-inflammatory activity.

Astaxanthin Chemical Structure

Cas No.:472-61-7

规格 价格 库存 购买数量
5mg
¥446.00
现货
10mg
¥625.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Astaxanthin (β-Carotene-4,4'-dione, Trans-Astaxanthin), a xanthophyll carotenoid, is a nutrient with unique cell membrane actions and diverse clinical benefits with excellent safety and tolerability. Astaxanthin, a red dietary carotenoid isolated from Haematococcus pluvialis, is a modulator of PPARγ and a potent antioxidant with antiproliferative, neuroprotective and anti-inflammatory activity.

Astaxanthin is a carotenoid nutrient with molecular properties that precisely position it within cell membranes and circulating lipoproteins, thereby imbuing them with potent antioxidant and anti-inflammatory actions. Astaxanthin also effectively protects the double membrane system of mitochondria, to the point of boosting their energy production efficiency. In cultured cells, astaxanthin protects the mitochondria against endogenous oxygen radicals, conserves their redox (antioxidant) capacity, and enhances their energy production efficiency. Astaxanthin has also protected human LDL against oxidative attack. Astaxanthin specifically protects the mitochondria of cultured nerve cells against toxic attack and stimulates the proliferation of cultured nerve stem cells. It effectively protects cultured nerve cells against hydrogen peroxide toxicity, and down-regulates genes linked to cell death and up-regulates genes linked to cell survival[1].

In pharmacokinetic studies, after ingestion of esterified natural astaxanthin, only unesterified astaxanthin appears in the blood. Astaxanthin's bioavailability is substantially affected by meal timing and by smoking. Supplementation with astaxanthin may lower lipid peroxidation in vivo. Astaxanthin significantly improves the memory performance of mice in the Morris water maze. It has demonstrated safety in numerous human clinical trials. The doses of astaxanthin used in clinical trials have ranged from 1 mg/day to 40 mg/day (with the majority in the 6-12 mg range); single-dose pharmacokinetic studies use up to 100 mg per dose[1].

[1] Kidd P, et al. Altern Med Rev. 2011, 16(4):355-64. [2] Contreras-Ortiz JME, et al. Parasite. 2017, 24:17.

Chemical Properties

Cas No. 472-61-7 SDF
别名 虾青素
Canonical SMILES CC(/C=C/C(C(C)(C[C@H](O)C1=O)C)=C1C)=C\C=C\C(C)=C\C=C\C=C(C)\C=C\C=C(C)\C=C\C(C(C)(C[C@H](O)C2=O)C)=C2C
分子式 C40H52O4 分子量 596.84
溶解度 DMSO : 2 mg/mL (3.35 mM), Acetone : < 1 mg/mL (insoluble) 储存条件 -20°C, protect from light, stored under nitrogen,unstable in solution, ready to use.
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6755 mL 8.3775 mL 16.7549 mL
5 mM 0.3351 mL 1.6755 mL 3.351 mL
10 mM 0.1675 mL 0.8377 mL 1.6755 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Astaxanthin: a review of its chemistry and applications

Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated product. Also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helycobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans. This paper reviews the current available evidence regarding astaxanthin chemistry and its potential beneficial effects in humans.

Potential Anti-Atherosclerotic Properties of Astaxanthin

Astaxanthin is a naturally occurring red carotenoid pigment classified as a xanthophyll, found in microalgae and seafood such as salmon, trout, and shrimp. This review focuses on astaxanthin as a bioactive compound and outlines the evidence associated with its potential role in the prevention of atherosclerosis. Astaxanthin has a unique molecular structure that is responsible for its powerful antioxidant activities by quenching singlet oxygen and scavenging free radicals. Astaxanthin has been reported to inhibit low-density lipoprotein (LDL) oxidation and to increase high-density lipoprotein (HDL)-cholesterol and adiponectin levels in clinical studies. Accumulating evidence suggests that astaxanthin could exert preventive actions against atherosclerotic cardiovascular disease (CVD) via its potential to improve oxidative stress, inflammation, lipid metabolism, and glucose metabolism. In addition to identifying mechanisms of astaxanthin bioactivity by basic research, much more epidemiological and clinical evidence linking reduced CVD risk with dietary astaxanthin intake is needed.

Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review

Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite naturally synthesized by a number of bacteria, microalgae, and yeasts. The commercial production of this pigment has traditionally been performed by chemical synthesis, but the microalga Haematococcus pluvialis appears to be the most promising source for its industrial biological production. Due to its collective diverse functions in skin biology, there is mounting evidence that astaxanthin possesses various health benefits and important nutraceutical applications in the field of dermatology. Although still debated, a range of potential mechanisms through which astaxanthin might exert its benefits on skin homeostasis have been proposed, including photoprotective, antioxidant, and anti-inflammatory effects. This review summarizes the available data on the functional role of astaxanthin in skin physiology, outlines potential mechanisms involved in the response to astaxanthin, and highlights the potential clinical implications associated with its consumption.

Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions

Astaxanthin is a natural lipid-soluble and red-orange carotenoid. Due to its strong antioxidant property, anti-inflammatory, anti-apoptotic, and immune modulation, astaxanthin has gained growing interest as a multi-target pharmacological agent against various diseases. In the current review, the anti-inflammation mechanisms of astaxanthin involved in targeting for inflammatory biomarkers and multiple signaling pathways, including PI3K/AKT, Nrf2, NF-百B, ERK1/2, JNK, p38 MAPK, and JAK-2/STAT-3, have been described. Furthermore, the applications of anti-inflammatory effects of astaxanthin in neurological diseases, diabetes, gastrointestinal diseases, hepatic and renal diseases, eye and skin disorders, are highlighted. In addition to the protective effects of astaxanthin in various chronic and acute diseases, we also summarize recent advances for the inconsistent roles of astaxanthin in infectious diseases, and give our view that the exact function of astaxanthin in response to different pathogen infection and the potential protective effects of astaxanthin in viral infectious diseases should be important research directions in the future.

Astaxanthin for the Food Industry

Xanthophyll astaxanthin, which is commonly used in aquaculture, is one of the most expensive and important industrial pigments. It is responsible for the pink and red color of salmonid meat and shrimp. Due to having the strongest anti-oxidative properties among carotenoids and other health benefits, natural astaxanthin is used in nutraceuticals and cosmetics, and in some countries, occasionally, to fortify foods and beverages. Its use in food technology is limited due to the unknown effects of long-term consumption of synthetic astaxanthin on human health as well as few sources and the high cost of natural astaxanthin. The article characterizes the structure, health-promoting properties, commercial sources and industrial use of astaxanthin. It presents the possibilities and limitations of the use of astaxanthin in food technology, considering its costs and food safety. It also presents the possibilities of stabilizing astaxanthin and improving its bioavailability by means of micro- and nanoencapsulation.