Home>>Signaling Pathways>> Neuroscience>> Pain Research>>5-hydroxy Flunixin

5-hydroxy Flunixin Sale

(Synonyms: 5-羟基氟尼辛) 目录号 : GC49119

A metabolite of flunixin

5-hydroxy Flunixin Chemical Structure

Cas No.:75369-61-8

规格 价格 库存 购买数量
500 µg
¥1,627.00
现货
1 mg
¥2,930.00
现货
5 mg
¥12,215.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5-hydroxy Flunixin is a metabolite of the COX inhibitor flunixin .1

1.Daeseleire, E., Mortier, L., De Ruyck, H., et al.Determination of flunixin and ketoprofen in milk by liquid chromatography-tandem mass spectrometryAnal. Chim. Acta488(1)25-34(2003)

Chemical Properties

Cas No. 75369-61-8 SDF
别名 5-羟基氟尼辛
Canonical SMILES O=C(C1=C(NC2=CC=CC(C(F)(F)F)=C2C)N=CC(O)=C1)O
分子式 C14H11F3N2O3 分子量 312.2
溶解度 DMSO: soluble,Methanol: soluble 储存条件 -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.2031 mL 16.0154 mL 32.0307 mL
5 mM 0.6406 mL 3.2031 mL 6.4061 mL
10 mM 0.3203 mL 1.6015 mL 3.2031 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Plasma pharmacokinetics and milk residues of flunixin and 5-hydroxy Flunixin following different routes of administration in dairy cattle

J Dairy Sci 2012 Dec;95(12):7151-7.PMID:23040013DOI:10.3168/jds.2012-5754.

The objective of this study was to determine if the plasma pharmacokinetics and milk elimination of flunixin (FLU) and 5-hydroxy Flunixin (5OH) differ following intramuscular and subcutaneous injection of FLU compared with intravenous injection. Twelve lactating Holstein cows were used in a randomized crossover design study. Cows were organized into 2 groups based on milk production (<20 or >30 kg of milk/d). All cattle were administered 2 doses of 1.1mg of FLU/kg at 12-h intervals by intravenous, intramuscular, and subcutaneous injections. The washout period between routes of administration was 7d. Blood samples were collected from the jugular vein before FLU administration and at various time points up to 36 h after the first dose of FLU. Composite milk samples were collected before FLU administration and twice daily for 5d after the first dose of FLU. Samples were analyzed by ultra-HPLC with mass spectrometric detection. For FLU plasma samples, a difference in terminal half-life was observed among routes of administration. Harmonic mean terminal half-lives for FLU were 3.42, 4.48, and 5.39 h for intravenous, intramuscular, and subcutaneous injection, respectively. The mean bioavailability following intramuscular and subcutaneous dosing was 84.5 and 104.2%, respectively. The decrease in 5OH milk concentration versus time after last dose was analyzed with the nonlinear mixed effects modeling approach and indicated that both the route of administration and rate of milk production were significant covariates. The number of milk samples greater than the tolerance limit for each route of administration was also compared at each time point for statistical significance. Forty-eight hours after the first dose, 5OH milk concentrations were undetectable in all intravenously injected cows; however, one intramuscularly injected and one subcutaneously injected cow had measurable concentrations. These cows had 5OH concentrations above the tolerance limit at the 36-h withdrawal time. The high number of FLU residues identified in cull dairy cows by the United States Department of Agriculture Food Safety Inspection Service is likely related to administration of the drug by an unapproved route. Cattle that received FLU by the approved (intravenous) route consistently eliminated the drug before the approved withdrawal times; however, residues can persist beyond these approved times following intramuscular or subcutaneous administration. Cows producing less than 20 kg of milk/d had altered FLU milk clearance, which may also contribute to violative FLU residues.

Comparison of pharmacokinetics and milk elimination of flunixin in healthy cows and cows with mastitis

J Am Vet Med Assoc 2015 Jan 1;246(1):118-25.PMID:25517334DOI:10.2460/javma.246.1.118.

Objective: To determine whether pharmacokinetics and milk elimination of flunixin and 5-hydroxy Flunixin differed between healthy and mastitic cows. Design: Prospective controlled clinical trial. Animals: 20 lactating Holstein cows. Procedures: Cows with mastitis and matched control cows received flunixin IV, ceftiofur IM, and cephapirin or ceftiofur, intramammary. Blood samples were collected before (time 0) and 0.25, 0.5, 1, 2, 4, 8, 12, 24, and 36 hours after flunixin administration. Composite milk samples were collected at 0, 2, 12, 24, 36, 48, 60, 72, 84, and 96 hours. Plasma and milk samples were analyzed by use of ultra-high-performance liquid chromatography with mass spectrometric detection. Results: For flunixin in plasma samples, differences in area under the concentration-time curve and clearance were detected between groups. Differences in flunixin and 5-hydroxy Flunixin concentrations in milk were detected at various time points. At 36 hours after flunixin administration (milk withdrawal time), 8 cows with mastitis had 5-hydroxy Flunixin concentrations higher than the tolerance limit (ie, residues). Flunixin residues persisted in milk up to 60 hours after administration in 3 of 10 mastitic cows. Conclusions and clinical relevance: Pharmacokinetics and elimination of flunixin and 5-hydroxy Flunixin in milk differed between mastitic and healthy cows, resulting in violative residues. This may partially explain the high number of flunixin residues reported in beef and dairy cattle. This study also raised questions as to whether healthy animals should be used when determining withdrawal times for meat and milk.

Screening and Confirmatory Analyses of Flunixin in Tissues and Bodily Fluids after Intravenous or Intramuscular Administration to Cull Dairy Cows with or without Lipopolysaccharide Challenge

J Agric Food Chem 2016 Jan 13;64(1):336-45.PMID:26695354DOI:10.1021/acs.jafc.5b04793.

Twenty cull dairy cows (645 ± 83 kg) were treated with 2.2 mg/kg bw flunixin by intravenous (IV) or intramuscular (IM) administration with, or without, exposure to lipopolysaccharide in a two factor balanced design. The usefulness of screening assays to identify violative flunixin levels in a variety of easily accessible ante-mortem fluids in cattle was explored. Two animals with violative flunixin liver residue and/or violative 5-hydroxy Flunixin milk residues were correctly identified by a flunixin liver ELISA screen. Oral fluid did not produce anticipated flunixin concentration profiles using ELISA determination. One cow that had liver and milk violative residues, and one cow that had a milk violation at the prescribed withdrawal period were correctly identified by flunixin milk lateral flow analyses. The ratio of urinary flunixin and 5-hydroxy Flunixin may be useful for predicting disruption of metabolism caused by disease or other factors potentially leading to violative liver flunixin residues.

Pharmacokinetic Parameters and Estimated Milk Withdrawal Intervals for Domestic Goats ( Capra Aegagrus Hircus) After Administration of Single and Multiple Intravenous and Subcutaneous Doses of Flunixin Meglumine

Front Vet Sci 2020 May 19;7:213.PMID:32509803DOI:10.3389/fvets.2020.00213.

Introduction: The study objectives were to estimate plasma flunixin (FLU) pharmacokinetic parameters and milk depletion profiles for FLU and its metabolite (5-hydroxy Flunixin; 5-OH) after subcutaneous (SC) and intravenous (IV) administration of single and multiple flunixin meglumine (FM) doses to non-lactating (nulliparous and pregnant does) and lactating dairy goats. Analytical methods (ELISA and UPLC-MS/MS) for quantifying plasma FLU concentrations were compared. The final objective was to use regulatory (FDA and EMA) methods to estimate milk withdrawal intervals following extra-label drug use in goats. Methods: FM was administered IV and SC to commercial dairy goats at 1.1 mg/kg for single and multiple doses. Plasma and milk samples were analyzed for FLU and 5-OH via UPLC-MS/MS. Plasma samples were also analyzed for FLU concentrations via ELISA. Using statistical approaches recommended by regulatory agencies, milk withdrawal intervals were estimated following FM extra-label use. Results: Following IV administration of a single FM dose, clearances were 127, 199, and 365 ml/kg/h for non-lactating (NL) pregnant does, NL nulliparous does, and lactating dairy does, respectively. Following multiple SC doses, clearance/F was 199 ml/kg/h for lactating does. After IV administration of a single FM dose, terminal elimination half-lives were 4.08, 2.87, and 3.77 h for NL pregnant does, NL nulliparous does, and lactating dairy does, respectively. After multiple SC doses, the terminal elimination half-life was 3.03 h for lactating dairy does. No significant differences were noted for samples analyzed by UPLC-MS/MS or ELISA. Milk withdrawal intervals ranged from 36 to 60 h depending on the regulatory statistical method and dosage regimen. Conclusions: Subcutaneous administration of FM to goats results in similar plasma pharmacokinetic parameters as IV administration. ELISA analysis is an alternative method to UPLC-MS/MS for quantifying FLU concentrations in caprine plasma samples. Following FM extra-label administration to dairy goats, clinicians could consider 36-60 h milk withdrawal intervals.

Comparison of ELISA and LC-MS/MS for the measurement of flunixin plasma concentrations in beef cattle after intravenous and subcutaneous administration

J Agric Food Chem 2013 Mar 20;61(11):2679-86.PMID:23470029DOI:10.1021/jf304773p.

Eight cattle (288 ± 22 kg) were treated with 2.2 mg/kg of body weight of flunixin free acid in a crossover design by subcutaneous (SC) and intravenous (IV) administration. After a minimum 1:10 dilution with 50 mM phosphate buffer, a commercial immunoassay was adapted to determine plasma concentrations of flunixin. The limit of detection was 0.42 ng/mL and the working range was 0.76-66.4 ng/mL when adjusted with the dilution factor. Plasma samples were extracted using mixed-mode cation exchange solid phase extraction prior to the LC-MS/MS analyses. The linear calibration curve for LC-MS/MS was 0.5-2000 ng/mL with a limit of detection of 0.1 ng/mL for flunixin and 0.3 ng/mL for 5-hydroxy Flunixin. Flunixin concentrations determined using the ELISAs were compared to concentrations derived from the same samples using LC-MS/MS analyses. Pharmacokinetic parameters of time versus concentration data from each analysis were estimated and compared. Differences (P < 0.05) in estimates of area under the curve, volume of distribution, and clearance were apparent between ELISA and LC-MS/MS analyses after IV dosing; after SC dosing, however, there were no differences among the estimated parameters between the two methods. Quantitative immunoassay was a satisfactory method of flunixin analysis and that it would be difficult to differentiate routes of administration in healthy beef cattle based on the plasma elimination profile of flunixin after IV or SC administration.