Home>>Signaling Pathways>> Neuroscience>> 5-HT Receptor>>5-HT3 antagonist 2

5-HT3 antagonist 2 Sale

目录号 : GC31247

5-HT3antagonist2是5-HT3受体的拮抗剂。

5-HT3 antagonist 2 Chemical Structure

Cas No.:128199-93-9

规格 价格 库存 购买数量
1mg
¥5,177.00
现货
5mg
¥10,264.00
现货
10mg
¥17,493.00
现货
20mg
¥30,791.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

5-HT3 antagonist 2 is a 5-HT3 receptor antagonist.

5-HT3 antagonist 2 is from the reference compound 21k[1].

[1]. Swain CJ, et al. Novel 5-HT3 antagonists: indol-3-ylspiro(azabicycloalkane-3,5'(4'H)-oxazoles). J Med Chem. 1992 Mar 20;35(6):1019-31.

Chemical Properties

Cas No. 128199-93-9 SDF
Canonical SMILES CN1C=C(C(O2)=NCC32CN4CCC3CC4)C5=C1C=CC=C5
分子式 C18H21N3O 分子量 295.38
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.3855 mL 16.9273 mL 33.8547 mL
5 mM 0.6771 mL 3.3855 mL 6.7709 mL
10 mM 0.3385 mL 1.6927 mL 3.3855 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Dietary and pharmacological treatment of abdominal pain in IBS

This review introduces the principles of visceral sensation and appraises the current approaches to management of visceral pain in functional GI diseases, principally IBS. These approaches include dietary measures including fibre supplementation, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols diet, and pharmacological approaches such as antispasmodics, peppermint oil, antidepressants (tricyclic agents, selective serotonin reuptake inhibitors), 5-HT3 receptor antagonists (alosetron, ondansetron, ramosetron), non-absorbed antibiotic (rifaximin), secretagogues (lubiprostone, linaclotide), μ-opioid receptor (OR) and κ-OR agonist, δ-OR antagonist (eluxadoline), histamine H1 receptor antagonist (ebastine), neurokinin-2 receptor antagonist (ibodutant) and GABAergic agents (gabapentin and pregabalin). Efficacy and safety are discussed based on pivotal trials or published systematic reviews and meta-analysis, expressing ORs or relative risks and their 95% CIs. Potential new approaches may be based on recent insights on mucosal expression of genes, and microRNA and epigenetic markers in human biopsies and in animal models of visceral hypersensitivity.The objectives of this review are to appraise the physiology and anatomy of gut sensation and the efficacy in the relief of visceral pain (typically in IBS) of several classes of therapies. These include fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAPs) and different classes of medications (box 1). Box 1Classes of pharmacological agents for visceral painAntidepressants (tricyclic agents, selective serotonin reuptake inhibitors)Peppermint oil5-HT3 receptor antagonists (alosetron, ondansetron, ramosetron)Non-absorbed antibiotic (rifaximin)Secretagogues (lubiprostone, linaclotide)μ-Opioid receptor (OR) and κ-OR agonist and δ-OR antagonist (eluxadoline)Histamine H1 receptor antagonist (ebastine)Neurokinin-2 receptor antagonist (ibodutant)GABAergic agents (gabapentin and pregabalin).

2-Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor antagonist with antidepressant character

2-Amino-6-chloro-3,4-dihydroquinazoline HCl (A6CDQ, 4) binds at 5-HT3 serotonin receptors and displays antidepressant-like action in the mouse tail suspension test (TST). Empirically, 4 was demonstrated to be a 5-HT3 receptor antagonist (two-electrode voltage clamp recordings using frog oocytes; IC50=0.26μM), and one that should readily penetrate the blood-brain barrier (logP=1.86). 5-HT3 receptor antagonists represent a potential approach to the development of new antidepressants, and 4 is an example of a structurally novel 5-HT3 receptor antagonist that is active in a preclinical antidepressant model (i.e., the mouse TST).

The antimalarial drug proguanil is an antagonist at 5-HT3 receptors

Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.

5-HT3 receptor antagonism a potential therapeutic approach for the treatment of depression and other disorders

Background: Depression or Major depressive disorder (MDD) is a prolonged condition of sadness. MDD is the most common mental disorder that affects more than 264 million people worldwide. According to the monoamine hypothesis, serotonin (5-hydroxy tryptamine, 5-HT), dopamine (DA) and norepinephrine (NE) are the major neurotransmitters (NTs) involved in depression.
Methods: The methodology adopted for writing this review article is essentially based on the secondary literature search through a systematic literature review. This review mainly focussed on the role of 5-HT3 receptor antagonists (5-HT3RA) in depression and comorbid disorders like anxiety.
Results: Out of three major NTs mentioned above, serotonin has a predominant role in the pathophysiology of depression. The serotonin type-3 receptors (5-HT3R) are well renowned to be expressed in the central nervous system (CNS) in regions which have significance in the vomiting reflex, perception of pain, the reward system, cognition, depression and anxiety control. 5-HT3R are the receptors of serotonergic family that belong to ligand-gated ion channel. 5-HT3RA inhibit the binding of serotonin to postsynaptic 5-HT3R and increases its availability to other receptors like 5- HT1A, 1B and 1D as well as 5-HT2 receptors and produces anti-depressant-like effect. 5-HT3RA also have an important role in mood and stress disorders. Some of the studies have shown the effectiveness of these agents in stress disorder.
Conclusion: The present article focussed on the role of 5-HT3R and their antagonists in the treatment of depression and anxiety. Further studies are warranted to prove their efficacy with respect to other standard anti-depressants.

Antidepressant-like effect of novel 5-HT3 receptor antagonist N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p): an approach using rodent behavioral antidepressant tests

Objective: The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT3 receptor antagonist in rodent behavioral models of depression.
Materials and methods: The compound 6p was examined in various behavioral models like forced swim test (FST), tail suspension test (TST), mechanistic models [5-hydroxytryptophan (5-HTP)-induced head twitch and reserpine-induced hypothermia (RIH)], and in chronic surgery model-olfactory bulbectomy in rats.
Results: Compound 6p (1, 2, and 4 mg/kg, i.p.) exhibited antidepressant-like effect in FST and TST after acute treatment without having an effect on baseline locomotor activity. Moreover, 6p (2 mg/kg, i.p.), potentiated the 5-HTP-induced head twitch responses in mice and inhibited the RIH in rats. Chronic treatment (14 days) with 6p (1 and 2 mg/kg, p.o.) and paroxetine (10 mg/kg, p.o.) in rats significantly reversed the behavioral anomalies induced by bilateral olfactory bulbectomy using open field exploration.
Conclusion: The preliminary studies reveal that compound 6p exhibits antidepressant-like effect in behavioral rodent models of depression.