Home>>Signaling Pathways>>ML-162

ML-162 Sale

目录号 : GC44214

A GPX4 inhibitor

ML-162 Chemical Structure

Cas No.:1035072-16-2

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥847.00
现货
5mg
¥770.00
现货
10mg
¥1,190.00
现货
25mg
¥2,520.00
现货
50mg
¥4,060.00
现货
100mg
¥6,510.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ML-162 is a GPX4 inhibitor that is selectively lethal to mutant RAS oncogene-expressing cell lines (IC50s = 25 and 578 nM for HRASG12V-expressing and wild-type BJ fibroblasts, respectively).[1],[2] It shares a similar structure but is more potent and selective than (1S,3R)-RSL3, a previously reported inhibitor of RAS oncogene-expressing cells.[2]

Reference:
[1]. Yang, W.S., and Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26(3), 165-176 (2016).
[2]. Weïwer, M., Bittker, J.A., Lewis, T.A., et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett. 22(4), 1822-1826 (2012).

Chemical Properties

Cas No. 1035072-16-2 SDF
化学名 α-[(2-chloroacetyl)(3-chloro-4-methoxyphenyl)amino]-N-(2-phenylethyl)-2-thiopheneacetamide
Canonical SMILES O=C(C(N(C(CCl)=O)C1=CC=C(OC)C(Cl)=C1)C2=CC=CS2)NCCC3=CC=CC=C3
分子式 C23H22Cl2N2O3S 分子量 477.4
溶解度 1mg/mL in ethanol, 25mg/ml in DMSO, 10mg/mL in DMF 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.0947 mL 10.4734 mL 20.9468 mL
5 mM 0.4189 mL 2.0947 mL 4.1894 mL
10 mM 0.2095 mL 1.0473 mL 2.0947 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer

Free Radic Biol Med 2018 Dec;129:454-462.PMID:30339884DOI:10.1016/j.freeradbiomed.2018.10.426.

Glutathione peroxidase 4 (GPX4) is a regulator of ferroptosis (iron-dependent, non-apoptotic cell death); its inhibition can render therapy-resistant cancer cells susceptible to ferroptosis. However, some cancer cells develop mechanisms protective against ferroptosis; understanding these mechanisms could help overcome chemoresistance. In this study, we investigated the molecular mechanisms underlying resistance to ferroptosis induced by GPX4 inhibition in head and neck cancer (HNC). The effects of two GPX4 inhibitors, (1S, 3R)-RSL3 and ML-162, and of trigonelline were tested in HNC cell lines, including cisplatin-resistant (HN3R) and acquired RSL3-resistant (HN3-rslR) cells. The effects of the inhibitors and trigonelline, as well as of inhibition of the p62, Keap1, or Nrf2 genes, were assessed by cell viability, cell death, lipid ROS production, and protein expression, and in mouse tumor xenograft models. Treatment with RSL3 or ML-162 induced the ferroptosis of HNC cells to varying degrees. RSL3 or ML-162 treatment increased the expression of p62 and Nrf2 in chemoresistant HN3R and HN3-rslR cells, inactivated Keap1, and increased expression of the phospho-PERK-ATF4-SESN2 pathway. Transcriptional activation of Nrf2 was associated with resistance to ferroptosis. Overexpression of Nrf2 by inhibiting Keap1 or Nrf2 gene transfection rendered chemosensitive HN3 cells resistant to RSL3. However, Nrf2 inhibition or p62 silencing sensitized HN3R cells to RSL3. Trigonelline sensitized chemoresistant HNC cells to RSL3 treatment in a mouse model transplanted with HN3R. Thus, activation of the Nrf2-ARE pathway contributed to the resistance of HNC cells to GPX4 inhibition, and inhibition of this pathway reversed the resistance to ferroptosis in HNC.

CYP2E1 overexpression protects COS-7 cancer cells against ferroptosis

Res Sq 2023 Mar 22;rs.3.rs-2702878.PMID:36993697DOI:10.21203/rs.3.rs-2702878/v1.

Ferroptosis is a recently described form of regulated cell death initiated by the iron-mediated one-electron reduction of lipid hydroperoxides (LOOH). Cytochrome P450 2E1 (CYP2E1) induction, a consequence of genetic polymorphisms or/and gene induction by xenobiotics, may promote ferroptosis by contributing to the cellular pool of LOOH. However, CYP2E1 induction also increases the transcription of anti-ferroptotic genes that regulate the activity of glutathione peroxidase 4 (GPX4), the main ferroptosis inhibitor. Based on the above, we hypothesize that the impact of CYP2E1 induction on ferroptosis depends on the balance between pro- and anti-ferroptotic pathways triggered by CYP2E1. To test our hypothesis, ferroptosis was induced with class 2 inducers (RSL-3 or ML-162) in mammalian COS-7 cancer cells that don’t express CYP2E1 (Mock cells), and in cells engineered to express human CYP2E1 (WT cells), and the impact on viability, lipid peroxidation and GPX4 was assessed. CYP2E1 overexpression protected COS-7 cancer cells against ferroptosis, evidenced by an increase in the IC 50 and a decrease in lipid ROS in WT versus Mock cells after exposure to class 2 inducers. CYP2E1 overexpression produced an 80% increase in the levels of the GPX4 substrate glutathione (GSH). Increasing GSH in Mock cells protected cells against ferroptosis by ML-162. Depleting GSH, or inhibiting Nrf2 in WT cells reverted the protective effect mediated by CYP2E1, causing a decrease in the IC 50 and an increase in lipid ROS after exposure to ML-162. These results show that CYP2E1 overexpression protects COS-7 cancer cells against ferroptosis, an effect probably mediated by Nrf2-dependent GSH induction.

Ugi reaction-assisted assembly of covalent PROTACs against glutathione peroxidase 4

Bioorg Chem 2023 May;134:106461.PMID:36924654DOI:10.1016/j.bioorg.2023.106461.

Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) is a popular cancer treatment strategy. However, only few GPX4 inhibitors have been developed to date. PROteolysis Targeting Chimera (PROTAC) is a promising approach to provide new opportunities to overcome limitations of traditional therapeutics. Herein, a PROTAC-like activity-based probe PD-Q2 was first assembled using Ugi reaction, consisting of a known GPX4 inhibitor ML-162 homolog to the E3 ligase cereblon ligand-pomalidomide. Pull-down and immunoblotting analysis revealed that GPX4 was a covalent target of PD-Q2, but the degradation efficiency was weak. Therefore, a series of degraders was further synthesized by varying the linkers of heterofunctional PROTACs. Among these degraders, PD-4 and PD-P2 were found to promote effective GPX4 degradation via the ubiquitin-proteasome system and cause lipid ROS accumulation. PD-4 and PD-P2 showed potent inhibitory of colony formation and cell growth. Furthermore, we found that with pomalidomide, the degraders exhibit a high fluorescent signal that is mostly localized in the lysosome, which may affect the effectiveness of anti-cell proliferation. Overall, we provide GPX4 degraders for further exploring therapeutic potential of regulating ferroptosis.

The Multidrug Resistance Transporter P-glycoprotein Confers Resistance to Ferroptosis Inducers

bioRxiv 2023 Feb 23;2023.02.23.529736.PMID:36945397DOI:10.1101/2023.02.23.529736.

Ferroptosis is a form of cell death caused by direct or indirect inhibition of glutathione peroxidase 4 that leads to lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding resistance mechanisms, particularly their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. Given the role that ABC transporters play in absorption, distribution, and excretion of many drugs, characterizing these interactions could provide information regarding oral bioavailability and brain penetration and may predict drug-drug interactions. Using ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2, we found that P-gp overexpression was able to confer resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. Results were confirmed with OVCAR8-derived NCI/ADR-RES cells that overexpress P-gp, where the P-gp inhibitor valspodar completely inhibited resistance to the FINs. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1 . At a concentration of 10 μM, the FINs ML-162, GPX inhibitor 26a, and PACMA31 were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells and GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions. Significance statement: While several small-molecule ferroptosis inducers have been described, little work has addressed potential interactions with ABC transporters such as P-glycoprotein or ABCG2 that might limit bioavailability or brain penetration. We find that the ferroptosis inducers FIN56, imidazole ketone erastin, and piperazine erastin are substrates of P-glycoprotein. ML-162, GPX inhibitor 26a, and PACMA31 were found to inhibit P-glycoprotein, while GPX inhibitor 26a was additionally able to inhibit ABCG2, suggesting the potential for drug-drug interactions.