Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> Calcium Channel>>GV-58

GV-58 Sale

(Synonyms: (2R)-2-[[6-[[(5-甲基噻吩-2-基)甲基]氨基]-9-丙基-9H-嘌呤-2-基]氨基]丁烷-1-醇) 目录号 : GC30850

GV-58 is a novel, selective N-type and P/Q-type Ca2+ channels agonist with IC50s of 7.21 μM and 8.81 μM, respectively.

GV-58 Chemical Structure

Cas No.:1402821-41-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,733.00
现货
1mg
¥630.00
现货
5mg
¥1,575.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

GV-58 is a novel, selective N-type and P/Q-type Ca2+ channels agonist with IC50s of 7.21 μM and 8.81 μM, respectively.

[1] Tyler B Tarr , et al. J Neurosci . 2013 Jun 19;33(25):10559-67.

Chemical Properties

Cas No. 1402821-41-3 SDF
别名 (2R)-2-[[6-[[(5-甲基噻吩-2-基)甲基]氨基]-9-丙基-9H-嘌呤-2-基]氨基]丁烷-1-醇
Canonical SMILES CC[C@@H](NC1=NC(NCC2=CC=C(C)S2)=C3N=CN(CCC)C3=N1)CO
分子式 C18H26N6OS 分子量 374.5
溶解度 DMSO : 50 mg/mL (133.51 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.6702 mL 13.3511 mL 26.7023 mL
5 mM 0.534 mL 2.6702 mL 5.3405 mL
10 mM 0.267 mL 1.3351 mL 2.6702 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Activation of Voltage-Gated Na+ Current by GV-58, a Known Activator of CaV Channels

GV-58 ((2R)-2-[(6-{[(5-methylthiophen-2-yl)methyl]amino}-9-propyl-9H-purin-2-yl)amino]butan-1-ol) is recognized to be an activator of N- and P/Q-type Ca2+ currents. However, its modulatory actions on other types of ionic currents in electrically excitable cells remain largely unanswered. This study was undertaken to explore the possible modifications caused by GV-58 in ionic currents (e.g., voltage-gated Na+ current [INa], A-type K+ current [IK(A)], and erg-mediated K+ current [IK(erg)]) identified from pituitary GH3 lactotrophs. GH3 cell exposure to GV-58 enhanced the transient and late components of INa with varying potencies; consequently, the EC50 values of GV-58 required for its differential increase in peak and late INa in GH3 cells were estimated to be 8.9 and 2.6 μM, respectively. The INa in response to brief depolarizing pulse was respectively stimulated or suppressed by GV-58 or tetrodotoxin, but it failed to be altered by ω-conotoxin MVIID. Cell exposure to this compound increased the recovery of INa inactivation evoked by two-pulse protocol based on a geometrics progression; however, in its presence, there was a slowing in the inactivation rate of current decay evoked by a train of depolarizing pulses. The existence of GV-58 also resulted in an increase in the amplitude of ramp-induced resurgent and window INa. The presence of this compound inhibited IK(A) magnitude, accompanied by a shortening in inactivation time course of the current; however, it mildly decreased IK(erg). Under current-clamp conditions, GV-58 increased the frequency of spontaneous action potentials in GH3 cells. Moreover, in NSC-34 motor neuron-like cells, the presence of GV-58 not only raised INa amplitude but also reduced current inactivation. Taken together, the overall work provides a noticeable yet unidentified finding which implies that, in addition to its agonistic effect on Ca2+ currents, GV-58 may concertedly modify the amplitude and gating kinetics of INa in electrically excitable cells, hence modifiying functional activities in these cells.

Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca(2+) channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca(2+) channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.

Lambert-Eaton myasthenic syndrome: mouse passive-transfer model illuminates disease pathology and facilitates testing therapeutic leads

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder caused by antibodies directed against the voltage-gated calcium channels that provide the calcium ion flux that triggers acetylcholine release at the neuromuscular junction. To study the pathophysiology of LEMS and test candidate therapeutic strategies, a passive-transfer animal model has been developed in mice, which can be created by daily intraperitoneal injections of LEMS patient serum or IgG into mice for 2-4 weeks. Results from studies of the mouse neuromuscular junction have revealed that each synapse has hundreds of transmitter release sites but that the probability for release at each one is likely to be low. LEMS further reduces this low probability such that transmission is no longer effective at triggering a muscle contraction. The LEMS-mediated attack reduces the number of presynaptic calcium channels, disorganizes transmitter release sites, and results in the homeostatic upregulation of other calcium channel types. Symptomatic treatment is focused on increasing the probability of release from dysfunctional release sites. Current treatment uses the potassium channel blocker 3,4-diaminopyridine (DAP) to broaden the presynaptic action potential, providing more time for calcium channels to open. Current research is focused on testing new calcium channel gating modifiers that work synergistically with DAP.

Complete reversal of Lambert-Eaton myasthenic syndrome synaptic impairment by the combined use of a K+ channel blocker and a Ca2+ channel agonist

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder in which a significant fraction of the presynaptic P/Q-type Ca(2+) channels critical to the triggering of neurotransmitter release at the neuromuscular junction (NMJ) are thought to be removed. There is no cure for LEMS, and the current most commonly used symptomatic treatment option is a potassium channel blocker [3,4-diaminopyridine (3,4-DAP)] that does not completely reverse symptoms and can have dose-limiting side-effects. We previously reported the development of a novel Ca(2+) channel agonist, GV-58, as a possible alternative treatment strategy for LEMS. In this study, we tested the hypothesis that the combination of GV-58 and 3,4-DAP will elicit a supra-additive increase in neurotransmitter release at LEMS model NMJs. First, we tested GV-58 in a cell survival assay to assess potential effects on cyclin-dependent kinases (Cdks) and showed that GV-58 did not affect cell survival at the relevant concentrations for Ca(2+) channel effects. Then, we examined the voltage dependence of GV-58 effects on Ca(2+) channels using patch clamp techniques; this showed the effects of GV-58 to be dependent upon Ca(2+) channel opening. Based on this mechanism, we predicted an interaction between 3,4-DAP and GV-58. We tested this hypothesis using a mouse passive transfer model of LEMS. Using intracellular electrophysiological ex vivo recordings, we demonstrated that a combined application of 3,4-DAP plus GV-58 had a supra-additive effect that completely reversed the deficit in neurotransmitter release magnitude at LEMS model NMJs. This reversal contrasts with the less significant improvement observed with either compound alone. Our data indicate that a combination of 3,4-DAP and GV-58 represents a promising treatment option for LEMS and potentially for other disorders of the NMJ.

Evaluation of a novel calcium channel agonist for therapeutic potential in Lambert-Eaton myasthenic syndrome

We developed a novel calcium (Ca(2+)) channel agonist that is selective for N- and P/Q-type Ca(2+) channels, which are the Ca(2+) channels that regulate transmitter release at most synapses. We have shown that this new molecule (GV-58) slows the deactivation of channels, resulting in a large increase in presynaptic Ca(2+) entry during activity. GV-58 was developed as a modification of (R)-roscovitine, which was previously shown to be a Ca(2+) channel agonist, in addition to its known cyclin-dependent kinase activity. In comparison with the parent molecule, (R)-roscovitine, GV-58 has a ?20-fold less potent cyclin-dependent kinase antagonist effect, a ?3- to 4-fold more potent Ca(2+) channel agonist effect, and ?4-fold higher efficacy as a Ca(2+) channel agonist. We have further evaluated GV-58 in a passive transfer mouse model of Lambert-Eaton myasthenic syndrome and have shown that weakened Lambert-Eaton myasthenic syndrome-model neuromuscular synapses are significantly strengthened following exposure to GV-58. This new Ca(2+) channel agonist has potential as a lead compound in the development of new therapeutic approaches to a variety of disorders that result in neuromuscular weakness.