Home>>Lipids>> Endocannabinoid/Endocannabinoid-like>>Eicosapentaenoyl Ethanolamide

Eicosapentaenoyl Ethanolamide

(Synonyms: EPEA) 目录号 : GC43593

An N-acylethanolamine signaling molecule

Eicosapentaenoyl Ethanolamide Chemical Structure

Cas No.:109001-03-8

规格 价格 库存 购买数量
5mg
¥839.00
现货
10mg
¥1,593.00
现货
50mg
¥6,716.00
现货
100mg
¥11,751.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Eicosapentaenoyl Ethanolamide (EPEA) is an N-acylethanolamide that inhibits dietary-restriction-induced lifespan extension in wild type and TOR pathway mutant nematodes. Produced endogenously from eicosapentaenoic acid, EPEA serves as a metabolic signal that couples nutrient availability with growth and lifespan. EPEA also has anti-inflammatory properties, suppressing the expression of IL-6 and MCP-1 in 3T3-L1 adipocytes in response to lipopolysaccharide.

Chemical Properties

Cas No. 109001-03-8 SDF
别名 EPEA
Canonical SMILES O=C(NCCO)CCC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CC
分子式 C22H35NO2 分子量 345.5
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,Ethanol: 30 mg/ml,Ethanol:PBS (pH 7.2)(1:2): 0.3 mg/ml 储存条件 Store at -20°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.8944 mL 14.4718 mL 28.9436 mL
5 mM 0.5789 mL 2.8944 mL 5.7887 mL
10 mM 0.2894 mL 1.4472 mL 2.8944 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Novel Anti-inflammatory and Vasodilatory ω-3 Endocannabinoid Epoxide Regioisomers

Adv Exp Med Biol 2019;1161:219-232.PMID:31562632DOI:10.1007/978-3-030-21735-8_17.

Accumulating evidence suggests that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) offer protection against vascular inflammation, neuroinflammation, hypertension, and thrombosis. Recently, biochemical studies have demonstrated that these benefits are partially mediated by their conversion to ω-3 endocannabinoid epoxide metabolites. These lipid metabolites originate from the epoxidation of ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and Eicosapentaenoyl Ethanolamide (EPEA) by cytochrome P450 (CYP) epoxygenases to form epoxydocosapentaenoic acid-ethanolamides (EDP-EAs) and epoxyeicosatetraenoic acid-ethanolamides (EEQ-EAs), respectively. The EDP-EAs and EEQ-EAs are endogenously produced in rat brain and peripheral organs. Additionally, EDP-EAs and EEQ-EAs dose-dependently decrease pro-inflammatory IL-6 cytokine and increased anti-inflammatory IL-10 cytokine. Furthermore, the EEQ-EAs and EDP-EAs attenuate angiogenesis and cell migration in cancer cells, induce vasodilation in bovine coronary arteries, and reciprocally regulate platelet aggregation in washed human platelets. Taken together, the ω-3 endocannabinoid epoxides represent a new class of dual acting molecules that display unique pharmacological properties.

Anti-inflammatory ω-3 endocannabinoid epoxides

Proc Natl Acad Sci U S A 2017 Jul 25;114(30):E6034-E6043.PMID:28687674DOI:10.1073/pnas.1610325114.

Clinical studies suggest that diets rich in ω-3 polyunsaturated fatty acids (PUFAs) provide beneficial anti-inflammatory effects, in part through their conversion to bioactive metabolites. Here we report on the endogenous production of a previously unknown class of ω-3 PUFA-derived lipid metabolites that originate from the crosstalk between endocannabinoid and cytochrome P450 (CYP) epoxygenase metabolic pathways. The ω-3 endocannabinoid epoxides are derived from docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) to form epoxyeicosatetraenoic acid-ethanolamide (EEQ-EA) and epoxydocosapentaenoic acid-ethanolamide (EDP-EA), respectively. Both EEQ-EAs and EDP-EAs are endogenously present in rat brain and peripheral organs as determined via targeted lipidomics methods. These metabolites were directly produced by direct epoxygenation of the ω-3 endocannabinoids, docosahexanoyl ethanolamide (DHEA) and Eicosapentaenoyl Ethanolamide (EPEA) by activated BV-2 microglial cells, and by human CYP2J2. Neuroinflammation studies revealed that the terminal epoxides 17,18-EEQ-EA and 19,20-EDP-EA dose-dependently abated proinflammatory IL-6 cytokines while increasing anti-inflammatory IL-10 cytokines, in part through cannabinoid receptor-2 activation. Furthermore the ω-3 endocannabinoid epoxides 17,18-EEQ-EA and 19,20-EDP-EA exerted antiangiogenic effects in human microvascular endothelial cells (HMVEC) and vasodilatory actions on bovine coronary arteries and reciprocally regulated platelet aggregation in washed human platelets. Taken together, the ω-3 endocannabinoid epoxides' physiological effects are mediated through both endocannabinoid and epoxyeicosanoid signaling pathways. In summary, the ω-3 endocannabinoid epoxides are found at concentrations comparable to those of other endocannabinoids and are expected to play critical roles during inflammation in vivo; thus their identification may aid in the development of therapeutics for neuroinflammatory and cerebrovascular diseases.

The ω-3 endocannabinoid docosahexaenoyl ethanolamide reduces seizure susceptibility in mice by activating cannabinoid type 1 receptors

Brain Res Bull 2021 May;170:74-80.PMID:33581310DOI:10.1016/j.brainresbull.2021.02.011.

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most recognized omega-3 unsaturated fatty acids showing neuroprotective activity in animal and clinical studies. Docosahexaenoyl ethanolamide (DHEA) and Eicosapentaenoyl Ethanolamide (EPEA) are non-oxygenated endogenous metabolites of DHA and EPA, which might be in charge of the anti-seizure activity of the parent molecules. We examined the effect of these metabolites on the threshold of clonic seizures induced by pentylenetetrazole (PTZ). DHEA and EPEA possess similar chemical structure to the endogenous cannabinoids. Therefore, involvement of cannabinoid (CB) receptors in the anti-seizure effect of these metabolites was also investigated. DHA, DHEA, EPEA, AM251 (CB1 receptor antagonist), and AM630 (CB2 receptor antagonist) were administered to mice by intracerebroventricular (i.c.v.) route. Threshold of clonic seizures was determined 10 and/or 15 min thereafter by intravenous infusion of PTZ. The effect of DHA and DHEA on seizure threshold was then determined in mice, which were pretreated with AM251 and/or AM630. DHA (300μM), and DHEA (100 and 300 μM) significantly increased seizure threshold, 15 (p < 0.05) and 10 min (p < 0.01) after administration, respectively. DHEA was more potent than its parent lipid, DHA in decreasing seizure susceptibility. EPEA (300 and 1000 μM) did not change seizure threshold. AM251 fully prevented the increasing effect of DHA and DHEA on seizure threshold (p < 0.05). AM630 did not inhibit the effect of DHA and DHEA on seizure threshold. This is the first report indicating that DHEA but not EPEA, possesses anti-seizure action via activating CB1 receptors. DHEA is more potent than its parent ω-3 fatty acid DHA in diminishing seizure susceptibility.

Emerging class of omega-3 fatty acid endocannabinoids & their derivatives

Prostaglandins Other Lipid Mediat 2019 Aug;143:106337.PMID:31085370DOI:10.1016/j.prostaglandins.2019.106337.

Cannabinoid receptor activation is involved in homeostatic regulation of the body. These receptors are activated by cannabinoids, that include the active constituents of Cannabis sativa, as well as endocannabinoids (eCBs). The eCBs are endogenously synthesized from the omega-6 and omega-3 polyunsaturated fatty acids (PUFAs). The consumption of omega-3 fatty acids shifts the balance towards a higher proportion of omega-3 eCBs, whose physiological functions warrants further investigation. Herein, we review the discovery of omega-3 fatty acid derived eCBs that are generated from long chain omega-3 PUFAs - docosahexaenoyl ethanolamide (DHA-EA or synaptamide), docosahexanoyl-glycerol (DHG), Eicosapentaenoyl Ethanolamide (EPA-EA) and eicosapentanoylglycerol (EPG). Furthermore, we outline the lesser known omega-3 eCB-like molecules that arise from the conjugation of omega-3 fatty acids with neurotransmitters serotonin and dopamine - DHA-serotonin (DHA-5HT), DHA-dopamine (DHA-DA), EPA-serotonin (EPA-5HT) and EPA-dopamine (EPA-DA). Additionally, we describe the role of omega-3 eCBs and their derivatives in different disease states, such as pain, inflammation and cancer. Moreover, we detail the formation and potential physiological roles of the oxidative metabolites that arise from the metabolism of omega-3 eCBs by eicosanoid synthesizing enzymes - cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP450). In summary, we outline the novel findings regarding a growing class of signaling molecules that can control the physiological and pathophysiological processes in the body.

The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation

Prostaglandins Other Lipid Mediat 2019 Oct;144:106351.PMID:31260750DOI:10.1016/j.prostaglandins.2019.106351.

Notwithstanding the ongoing debate on their full potential in health and disease, there is general consensus that n-3 PUFAs play important physiological roles. Increasing dietary n-3 PUFA intake results in increased DHA and EPA content in cell membranes as well as an increase in n-3 derived oxylipin and -endocannabinoid concentrations, like fatty acid amides and glycerol-esters. These shifts are believed to (partly) explain the pharmacological and anti-inflammatory effects of n-3 PUFAs. Recent studies discovered that n-3 PUFA-derived endocannabinoids can be further metabolized by the oxidative enzymes CYP-450, LOX and COX, similar to the n-6 derived endocannabinoids. Interestingly, these oxidized n-3 PUFA derived endocannabinoids of Eicosapentaenoyl Ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) have higher anti-inflammatory and anti-proliferative potential than their precursors. In this review, an overview of recently discovered n-3 PUFA derived endocannabinoids and their metabolites is provided. In addition, the use of chemical probes will be presented as a promising technique to study the n-3 PUFA and n-3 PUFA metabolism within the field of lipid biochemistry.