Home>>Signaling Pathways>> GPCR/G protein>> CCR>>CCR1 antagonist 8

CCR1 antagonist 8 Sale

(Synonyms: CCR1 antagonist 8) 目录号 : GC31893

CCR1antagonist8(compound19n)是第三类氮杂唑系列化合物,是CCR1的临床候选拮抗剂,其IC50值为1.8nM。

CCR1 antagonist 8 Chemical Structure

Cas No.:1295298-26-8

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

CCR1 antagonist 8 (compound 19n), a third azaindazole series compound, is a CCR1 antagonist clinical candidate, with an IC50 of 1.8 nM in Ca2+ flux assay[1].

[1]. Harcken C, et al. Identification of novel azaindazole CCR1 antagonist clinical candidates. Bioorg Med Chem Lett. 2019 Feb 1;29(3):441-448.

Chemical Properties

Cas No. 1295298-26-8 SDF
别名 CCR1 antagonist 8
Canonical SMILES O=C(C1=CN=CC2=C1C=NN2C3=CC=C(F)C=C3)NC4(C5=CC(S(=O)(C)=O)=NC=C5)CC4
分子式 C22H18FN5O3S 分子量 451.47
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.215 mL 11.0749 mL 22.1499 mL
5 mM 0.443 mL 2.215 mL 4.43 mL
10 mM 0.2215 mL 1.1075 mL 2.215 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Pharmacological Evidence of the Important Roles of CCR1 and CCR3 and Their Endogenous Ligands CCL2/7/8 in Hypersensitivity Based on a Murine Model of Neuropathic Pain

Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.

Small molecule antagonist of C-C chemokine receptor 1 (CCR1) reduces disc inflammation in the rabbit model

Background context: Targeting chemokines or chemokine receptors is a promising treatment strategy for diseases with chronic inflammation such as rheumatoid arthritis and discogenic pain. Identifying specific molecules and determining their effectiveness in animal models are the first steps in developing these treatments. Macrophage markers have been detected in the intervertebral disc tissues of patients with disc degenerative disease and discogenic pain and in different animal models. Macrophage recruitment into the disc may play a role in initiation of inflammation and if unresolved may lead to chronic inflammation and subsequent back pain.
Purpose: The objectives of these studies are to (1) identify chemokine receptor antagonists that can block macrophage migration induced by disc cells in vitro and (2) determine if intradiscal treatment with these antagonists can reduce disc inflammation and degeneration in vivo.
Study design: In vitro migration assays were used to test effectiveness of chemokine receptor antagonists to block macrophage migration induced by disc cells. The rabbit annular puncture model was used to test for anti-inflammatory and regenerative effects of chemokine receptor antagonist treatment in vivo.
Methods: In vitro - THP-1 human monocytic cell line and freshly isolated rabbit primary splenocytes were assayed for migration using 3 ?m Corning Transwell inserts with conditioned media of interleukin (IL)-1β treated human or rabbit disc cells. Inhibition of macrophage migration was evaluated using different concentrations of small molecule antagonists of C-C chemokine receptor (CCR)1 and CCR2. In vivo - New Zealand White rabbits (n=40) underwent disc puncture and intradiscal treatment with saline, CCR1 or CCR2 antagonists within the same procedure. X-ray and magnetic resonance (MR) images and serum samples were taken for disc height, MRI grade and IL-8 serum level analyses. Intervertebral discs were isolated for RNA analysis of inflammatory and disc phenotypic markers and for immunohistochemical analysis of macrophage marker, RAM11. The outcome measures were compared between the three treatment groups. These studies were funded by a research grant from AO Foundation, Switzerland (Project no S-14-86A; 120000 CHF). CCR1 and CCR2 antagonists were kindly provided by ChemoCentryx (Mountain View, CA).
Results: In vitro migration assays showed that THP-1 migration induced by disc cells was blocked by CCR2 antagonist more effectively than CCR1 antagonist, while rabbit splenocyte migration was inhibited by CCR1 antagonist and not the other. In the rabbit annular puncture model, rabbit discs treated with CCR1 antagonist had significantly better MRI grades than those treated with CCR2 antagonist at 6 weeks post-treatment. Gene expression studies demonstrate that discs treated with CCR1 or CCR2 antagonists expressed less inflammatory markers than saline-treated discs at 3 weeks post-treatment. Although CCR2 antagonist treatment did not reduce inflammatory marker expression at 6 weeks, discs treated with CCR1 antagonist expressed less inflammatory markers and also a higher ratio of collagen type 2 to collagen type 1 genes indicating favorable disc matrix production. There were no significant differences between all three treatment groups in regards to disc height indexes, IL-8 serum levels or macrophage marker detection.
Conclusions: These studies have identified that small molecule antagonists against CCR2 and CCR1 were respectively effective in blocking THP-1 and rabbit splenocyte migration induced by disc cells in vitro. Further, both CCR2 and CCR1 antagonist intradiscal treatments were effective in reducing disc inflammation at an early time point of 3 weeks. Lastly, only CCR1 antagonist demonstrated anti-inflammatory effects and better MRI grades at 6 weeks.
Clinical significance: Our preclinical studies demonstrate that CCR1 and CCR2 antagonist delivery through intradiscal injection is sufficient to reduce disc inflammation at early time points, whereas CCR1 antagonists had longer term anti-inflammatory effects. Clinical studies have found that CCR1 antagonist was safe, tolerable and clinically active in reducing inflammation in rheumatoid arthritis patients. These studies suggest that CCR1 antagonist may be a promising biological treatment to reduce disc inflammation that translates to back pain relief.

Design, synthesis, and discovery of a novel CCR1 antagonist

The CC chemokines may play an important role in the pathogenesis of chronic inflammatory diseases including rheumatoid arthritis, and their effects are thought to be mediated through CCR1 receptors. Several nonpeptide CCR1 receptor antagonists that showed high affinity for human CCR1 receptors have been identified; however, their effectiveness in animal models of inflammatory diseases has been scarcely demonstrated, probably due to species selectivity of the antagonists. To elucidate the pathophysiological role of CCR1 receptors in murine models of disease, we looked for a potent antagonist for both murine and human CCR1 receptors. Screening of our chemical collection for inhibition of (125)I-MIP-1alpha binding to human CCR1 receptors transfected in CHO cells led to the identification of xanthene-9-carboxamide 1a as the lead compound. Derivatization of 1a by quaternarizing the piperidine nitrogen with various alkyl groups and by installing substituents into the xanthene moiety dramatically improved the inhibitory activity against both human and murine CCR1 receptors. As a result, 2q-1 showing IC(50) values of 0.9 and 5.8 nM for human and murine CCR1 receptors, respectively, was discovered. This compound is the first murine CCR1 receptor antagonist and may be a useful tool for clarifying the role of CCR1 receptors in murine models of disease.

Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial

Objectives: CCX354-C is a specific, orally administered antagonist of the C-C chemokine receptor 1, which regulates migration of monocytes and macrophages to synovial tissue. This clinical trial evaluated the safety and efficacy of CCX354-C in patients with rheumatoid arthritis (RA).
Methods: CARAT-2 is a 12-week double-blind, randomised, placebo controlled trial in 160 patients with RA, with 68 tender joint count and 66 swollen joint count ≥8 and C-reactive protein (CRP) >5 mg/l, despite being on methotrexate for at least 16 weeks. Subjects received placebo, CCX354-C 100 mg twice daily, or 200 mg once daily for 12 weeks. Endpoints included safety (primary) and RA disease activity assessments based on American College of Rheumatology (ACR) response, and changes in 28-joint disease activity score-CRP, individual ACR components, as well as soluble bone turnover markers.
Results: CCX354-C was generally well tolerated by study subjects. The ACR20 response at week 12 was 39% in the placebo group, 43% in the 100 mg twice daily group (difference and 95% CI compared with placebo, 4.5 (-14.1 to 23.1); p=0.62) and 52% in the 200 mg once daily group (13.0 (-5.8 to 31.8); p=0.17) in the intention-to-treat population, and 30% in the placebo group, 44% in the 100 mg twice daily group (14.4 (-5.9 to 34.8); p=0.17), and 56% in the 200 mg once daily group (25.8 (5.3 to 46.4); p=0.01) in the prespecified population of patients satisfying CRP and joint count eligibility criteria at the screening and day 1 (predose) visits.
Conclusions: CCX354-C exhibited a good safety and tolerability profile and evidence of clinical activity in RA.

Effect of a CCR1 receptor antagonist on systemic trafficking of MSCs and polyethylene particle-associated bone loss

Particle-associated periprosthetic osteolysis remains a major issue in joint replacement. Ongoing bone loss resulting from wear particle-induced inflammation is accompanied by continued attempts at bone repair. Previously we showed that mesenchymal stem cells (MSCs) are recruited systemically to bone exposed to continuous infusion of ultra high molecular weight polyethylene (UHMWPE) particles. The chemokine-receptor axis that mediates this process is unknown. We tested two hypotheses: (1) the CCR1 receptor mediates the systemic recruitment of MSCs to UHMWPE particles and (2) recruited MSCs are able to differentiate into functional mature osteoblasts and decrease particle-associated bone loss. Nude mice were allocated randomly to four groups. UHMWPE particles were continuously infused into the femoral shaft using a micro-pump. Genetically modified murine wild type reporter MSCs were injected systemically via the left ventricle. Non-invasive imaging was used to assay MSC migration and bone mineral density. Bioluminescence and immunohistochemistry confirmed the chemotaxis of reporter cells and their differentiation into mature osteoblasts in the presence of infused particles. Injection of a CCR1 antagonist decreased reporter cell recruitment to the UHMWPE particle infusion site and increased osteolysis. CCR1 appears to be a critical receptor for chemotaxis of MSCs in the presence of UHMWPE particles. Interference with CCR1 exacerbates particle-induced bone loss.