Home>>Signaling Pathways>> Others>> Others>>4-Chlorocatechol

4-Chlorocatechol Sale

(Synonyms: 4-氯邻苯二酚) 目录号 : GC60513

4-Chlorocatechol是4-chloro-2-aminophenol(4C2AP)的主要降解产物。4-Chlorocatechol也是一种catechol1,2-dioxygenases和chlorocatecholdioxygenase酶的底物。

4-Chlorocatechol Chemical Structure

Cas No.:2138-22-9

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

4-Chlorocatechol is a major degradation product of 4-chloro-2-aminophenol (4C2AP). 4-Chlorocatechol is also a substrate for catechol 1,2-dioxygenases and chlorocatechol dioxygenase[1][2].

[1]. Pankaj Kumar Arora, et al. Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800. Environ Sci Pollut Res Int. 2014 Feb;21(3):2298-2304. [2]. Raffaella Caglio, et al. Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring. Chembiochem. 2009 Apr 17;10(6):1015-24.

Chemical Properties

Cas No. 2138-22-9 SDF
别名 4-氯邻苯二酚
Canonical SMILES OC1=CC=C(Cl)C=C1O
分子式 C6H5ClO2 分子量 144.56
溶解度 储存条件 4°C, stored under nitroge
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.9175 mL 34.5877 mL 69.1754 mL
5 mM 1.3835 mL 6.9175 mL 13.8351 mL
10 mM 0.6918 mL 3.4588 mL 6.9175 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Regiospecific Oxidation of Chlorobenzene to 4-Chlororesorcinol, Chlorohydroquinone, 3-Chlorocatechol and 4-Chlorocatechol by Engineered Toluene o-Xylene Monooxygenases

Appl Environ Microbiol 2022 Jul 12;88(13):e0035822.PMID:35736230DOI:10.1128/aem.00358-22.

Toluene o-xylene monooxygenase (ToMO) was found to oxidize chlorobenzene to form 2-chlorophenol (2-CP, 4%), 3-CP (12%), and 4-CP (84%) with a total product formation rate of 1.2 ± 0.17 nmol/min/mg protein. It was also discovered that ToMO forms 4-Chlorocatechol (4-CC) from 3-CP and 4-CP with initial rates of 0.54 ± 0.10 and 0.40 ± 0.04 nmol/min/mg protein, respectively, and chlorohydroquinone (CHQ, 13%), 4-chlororesorcinol (4-CR, 3%), and 3-CC (84%) from 2-CP with an initial product formation rate of 1.1 ± 0.32 nmol/min/mg protein. To increase the oxidation rate and alter the oxidation regiospecificity of chloroaromatics, as well as to study the roles of active site residues L192 and A107 of the alpha hydroxylase fragment of ToMO (TouA), we used the saturation mutagenesis approach of protein engineering. Thirteen TouA variants were isolated, among which some of the best substitutions uncovered here have never been studied before. Specifically, TouA variant L192V was identified which had 1.8-, 1.4-, 2.4-, and 4.8-fold faster hydroxylation activity toward chlorobenzene, 2-CP, 3-CP, and 4-CP, respectively, compared to the native ToMO. The L192V variant also had the regiospecificity of chlorobenzene changed from 4% to 13% 2-CP and produced the novel product 3-CC (4%) from 3-CP. Most of the isolated variants were identified to change the regiospecificity of oxidation. For example, compared to the native ToMO, variants A107T, A107N, and A107M produced 6.3-, 7.0-, and 7.3-fold more 4-CR from 2-CP, respectively, and variants A107G and A107G/L192V produced 3-CC (33 and 39%, respectively) from 3-CP whereas native ToMO did not. IMPORTANCE Chlorobenzene is a commonly used toxic solvent and listed as a priority environmental pollutant by the US Environmental Protection Agency. Here, we report that Escherichia coli TG1 cells expressing toluene o-xylene monooxygenase (ToMO) can successfully oxidize chlorobenzene to form dihydroxy chloroaromatics, which are valuable industrial compounds. ToMO performs this at room temperature in water using only molecular oxygen and a cofactor supplied by the cells. Using protein engineering techniques, we also isolated ToMO variants with enhanced oxidation activity as well as fine-tuned regiospecificities which make direct microbial oxygenations even more attractive. The significance of this work lies in the ability to degrade environmental pollutants while at the same time producing valuable chemicals using environmentally benign biological methods rather than expensive, complex chemical processes.

Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-Chlorocatechol in Escherichia coli

J Hazard Mater 2021 Oct 5;419:126428.PMID:34171665DOI:10.1016/j.jhazmat.2021.126428.

Chlorinated aromatic compounds are a serious environmental concern because of their widespread occurrence throughout the environment. Although several microorganisms have evolved to gain the ability to degrade chlorinated aromatic compounds and use them as carbon sources, they still cannot meet the diverse needs of pollution remediation. In this study, the degradation pathways for 3-chlorocatechol (3CC) and 4-Chlorocatechol (4CC) were successfully reconstructed by the optimization, synthesis, and assembly of functional genes from different strains. The addition of a 13C-labeled substrate and functional analysis of different metabolic modules confirmed that the genetically engineered strains can metabolize chlorocatechol similar to naturally degrading strains. The strain containing either of these artificial pathways can degrade catechol, 3CC, and 4CC completely, although differences in the degradation efficiency may be noted. Proteomic analysis and scanning electron microscopy observation showed that 3CC and 4CC have toxic effects on Escherichia coli, but the engineered bacteria can significantly eliminate these inhibitory effects. As core metabolic pathways for the degradation of chloroaromatics, the two chlorocatechol degradation pathways constructed in this study can be used to construct pollution remediation-engineered bacteria, and the related technologies may be applied to construct complete degradation pathways for complex organic hazardous materials.

Novel degradation pathway of 4-chloro-2-aminophenol via 4-Chlorocatechol in Burkholderia sp. RKJ 800

Environ Sci Pollut Res Int 2014 Feb;21(3):2298-2304.PMID:24057966DOI:10.1007/s11356-013-2167-y.

Burkholderia sp. RKJ 800 utilized 4-chloro-2-aminophenol (4C2AP) as the sole carbon and energy source and degraded it with release of chloride and ammonium ions. The metabolic pathway of degradation of 4C2AP was studied and a novel intermediate, 4-Chlorocatechol was identified as a major degradation product of 4C2AP using high-performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 4C2AP-deaminase and 4-chlorocatechol-1,2-dioxygenase were detected in the crude extracts of the 4C2AP-induced cells of strain RKJ 800. The activity of the 4C2AP-deaminase confirmed the formation of 4-Chlorocatechol from 4C2AP and the 4-chlorocatechol-1,2-dioxygenase activity suggested the cleavage of 4-Chlorocatechol into 3-chloro-cis,cis-muconate. On the basis of the identified metabolites, we have proposed a novel degradation pathway of 4C2AP for Burkholderia sp. RKJ 800. Furthermore, the potential of Burkholderia sp. RKJ 800 to degrade 4C2AP in soil was also investigated using microcosm studies under laboratory conditions. The results of microcosm studies conclude that Burkholderia sp. RKJ 800 was able to degrade 4C2AP in soil and may be used to remediate 4C2AP-contaminated site. This is the first report of (1) the formation of 4-Chlorocatechol and 3-chloro-cis,cis-muconate in the degradation pathway of 4C2AP and (2) bioremediation of 4C2AP by any bacterium.

Bacterial metabolism of 4-chlorophenoxyacetate

Biochem J 1971 May;122(4):509-17.PMID:5123884DOI:10.1042/bj1220509.

1. A pseudomonad capable of utilizing 4-chlorophenoxyacetate (CPA) as sole source of organic carbon was isolated from soil. 2. The organism was grown in liquid culture and the following compounds were isolated and identified in culture extracts: 4-chloro-2-hydroxyphenoxyacetate, 4-Chlorocatechol, beta-chloromuconate probably the cis-trans isomer and gamma-carboxymethylene-Delta(alphabeta)-butenolide. 3. Cells grown on 4-chlorophenoxyacetate were able to metabolize 4-chloro-2-hydroxyphenoxyacetate, 4-Chlorocatechol and gamma-carboxymethylene-Delta(alphabeta)-butenolide without a lag period. They were not adapted to 4-chlorophenol, or to either culture isolated or synthetic beta-chloromuconate, possibly because of stereospecificity towards the cis-cis isomer. 4. On the basis of isolation and induction evidence, the following metabolic pathway is proposed for the breakdown of 4-chlorophenoxyacetate by this organism: 4-chlorophenoxyacetate --> 4-chloro-2-hydroxyphenoxyacetate --> 4-Chlorocatechol --> cis-cis-beta-chloromuconate --> gamma-carboxymethylene-Delta(alphabeta)-butenolide --> maleylacetate and fumarylacetate --> fumarate and acetate.

X-ray structures of 4-Chlorocatechol 1,2-dioxygenase adducts with substituted catechols: new perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity

J Struct Biol 2013 Mar;181(3):274-82.PMID:23261399DOI:10.1016/j.jsb.2012.11.007.

The crystallographic structures of 4-Chlorocatechol 1,2-dioxygenase (4-CCD) complexes with 3,5-dichlorocatechol, protocatechuate (3,4-dihydroxybenzoate), hydroxyquinol (benzen-1,2,4-triol) and pyrogallol (benzen-1,2,3-triol), which act as substrates or inhibitors of the enzyme, have been determined and analyzed. 4-CCD from the Gram-positive bacterium Rhodococcus opacus 1CP is a Fe(III) ion containing enzyme specialized in the aerobic biodegradation of chlorocatechols. The structures of the 4-CCD complexes show that the catechols bind the catalytic iron ion in a bidentate mode displacing Tyr169 and the benzoate ion (found in the native enzyme structure) from the metal coordination sphere, as found in other adducts of intradiol dioxygenases with substrates. The analysis of the present structures allowed to identify the residues selectively involved in recognition of the diverse substrates. Furthermore the structural comparison with the corresponding complexes of catechol 1,2-dioxygenase from the same Rhodococcus strain (Rho-1,2-CTD) highlights significant differences in the binding of the tested catechols to the active site of the enzyme, particularly in the orientation of the aromatic ring substituents. As an example the 3-substituted catechols are bound with the substituent oriented towards the external part of the 4-CCD active site cavity, whereas in the Rho-1,2-CTD complexes the 3-substituents were placed in the internal position. The present crystallographic study shed light on the mechanism that allows substrate recognition inside this class of high specific enzymes involved in the biodegradation of recalcitrant pollutants.